首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
One of the most important aims of the fracture mechanics is to determine the fracture toughness of a material. Various methods were developed for this purpose and have been still used nowadays. In the J‐integral method that is one of them, providing of a dominant linear elastic condition on the specimen is not required. However, in ferritic steels, the fracture toughness values (KJC) obtained by the J‐integral method show some inconsistencies. Therefore, the ASTM E1921 standard was developed on ferritic steels, which are instabilities in the values of elastic or elastoplastic fracture toughness. In this study, a new method was used to determine the fracture toughness (KIC) of ferritic steels, and it was compared with the standard. Three steels with different mechanical properties and average grain size were investigated in this study.  相似文献   

2.
3.
4.
5.
Quantification of the enhancement in cleavage fracture toughness of ferritic steels following warm pre‐stressing has received great interest in light of its significance in the integrity assessment of such structures as pressure vessels. A Beremin type probability distribution model, i.e., a local stress‐based approach to cleavage fracture, has been developed and used for estimating cleavage fracture following prior loading (or warm pre‐stressing, WPS) in two ferritic steels with different geometry configurations. Firstly, the Weibull parameters required to match the experimental scatter in lower shelf toughness of the candidate steels are identified. These parameters are then used in two‐ and three‐dimensional finite element simulations of prior loading on the upper shelf followed by unloading and cooling to lower shelf temperatures (WPS) to determine the probability of failure. Using both isotropic hardening and kinematic hardening material models, the effect of hardening response on the predictions obtained from the suggested approach has been examined. The predictions are consistent with experimental scatter in toughness following WPS and provide a means of determining the importance of the crack tip residual stresses. We demonstrate that for our steels the crack tip residual stress is the pivotal feature in improving the fracture toughness following WPS. Predictions are compared with the available experimental data. The paper finally discusses the results in the context of the non‐uniqueness of the Weibull parameters and investigates the sensitivity of predictions to the Weibull exponent, m, and the relevance of m to the stress triaxiality factor as suggested in the literature.  相似文献   

6.
7.
High-strength steels are used to increase the load carrying capacity of components. However, to guarantee a safe design, it is also necessary to combine high strength with adequate fracture toughness. In this paper, fracture toughness of three high-strength steels with yield strengths ranging from 460 to 890 MPa has been studied at very low temperatures. Taking into account experimental evidence, a new mechanism of cleavage at very low temperatures is proposed. This mechanism considers the possibility of reaching the ideal strength (the stress at which the lattice of a single crystal losses its stability) in the immediate vicinity of the fatigue crack tip. Moreover, a computational model able to calculate the external load needed to produce a catastrophic failure of these steels has been developed.  相似文献   

8.
An elastic–plastic finite element method (FEM) is used to analyse the stress and strain distributions ahead of notches with various depths and flank angles in four-point bending (4PB) specimens of a C–Mn steel. By accurately measuring the distances of the cleavage initiation sites from the notch roots, the local cleavage fracture stress σ f is measured. By increasing the notch depth and notch flank angle from 2.25 to 8.25 mm and 10 to 90°, respectively, the distributions of high stress and strain at the moment of fracture show considerable variations. However, the value of σ f stays relatively constant. The critical fracture event is thus shown to be identical, i.e. the propagation of a ferrite grain-sized crack into the neighbouring matrix. It is concluded that σ f is mainly determined by the length of the critical microcrack, while the notch geometry and its associated stress volume have little effect on the value of σ f . The cleavage site ahead of a notch is determined by the stress distributions and the positions of the weakest grains.  相似文献   

9.
10.
This study presents the effect of residual stresses on cleavage fracture toughness by using the cohesive zone model under mode I, plane stain conditions. Modified boundary layer simulations were performed with the remote boundary conditions governed by the elastic K‐field and T‐stress. The eigenstrain method was used to introduce residual stresses into the finite element model. A layer of cohesive elements was deployed ahead of the crack tip to simulate the fracture process zone. A bilinear traction–separation‐law was used to characterize the behaviour of the cohesive elements. It was assumed that the initiation of the crack occurs when the opening stress drops to zero at the first integration point of the first cohesive element ahead of the crack tip. Results show that tensile residual stresses can decrease the cleavage fracture toughness significantly. The effect of the weld zone size on cleavage fracture toughness was also investigated, and it has been found that the initiation toughness is the linear function of the size of the geometrically similar weld. Results also show that the effect of the residual stress is stronger for negative T‐stress while its effect is relatively smaller for positive T‐stress. The influence of damage parameters and material hardening was also studied.  相似文献   

11.
A statistical model for cleavage fracture in notched specimens of C-Mn steel has been proposed. This model is based on a recently suggested physical model. This statistical model satisfactorily describes the distributions of the cumulative failure probability and failure probability density of 36 notched specimens fractured at various loads at test temperature of −196 °C. The minimum notch toughness has also been discussed.  相似文献   

12.
One of the fundamental aims of fracture mechanics is to define fracture toughness KIC of a material. Hence, the ASTM E399 standard was developed. However according to the standard, large‐sized specimens are required to determine the fracture toughness of low alloy carbon steels. ASTM E1921 standard was developed on the fracture toughness of ferritic steels. In this study, a new method was proposed to determine the fracture toughness of ferritic steels. The purpose of the present paper is to compare the results of the method with the experimental results. Two steels that are used in gas and oil main pipelines were investigated in this study.  相似文献   

13.
A new method to determine fracture toughness K IC of materials is introduced. A round-rod specimen having a V-grooved spiral line with a 45° pitch is tested under pure torsion. An equibiaxial tensile/compressive stress state is effectively created to simulate conventional test methods using a compact-type specimen with a thickness equivalent to the full length of the spiral line. K IC values are estimated from the fracture load and crack length with the aid of a three-dimensional finite element analysis. K IC of 7475-T7351 aluminium is estimated to be 51.3 MPa √m, which is higher than the vendor's value in the TL orientation by ∼0.8% and higher than 0.5T compact tension (CT) value by 6%; A302B steel yields 54.9 MPa √m being higher than CT test value by ∼2%. Good agreement between the K IC values obtained by different methods indicates the proposed method is sound and reliable.  相似文献   

14.
舰船结构钢的夏比冲击韧性与断口形貌   总被引:2,自引:1,他引:1  
论述了从夏比冲击韧性分解出来的断裂扩展功与断口形貌的关系,指出冶金因素对夏比冲击韧性α_k值和扩展功的影响不完全是一致的,提出采用α_k,值和断口纤维率作为韧性指标的互补性,建议在我国的舰船结构钢韧性指标中增加断口纤维率的要求。  相似文献   

15.
In this work, an attempt is made to model the ductile fracture behaviour of two Cu‐strengthened high strength low alloy (HSLA) steels through the understanding of their deformation behaviour. The variations in deformation behaviour are imparted by prior deformation of steels to various predetermined strains. The variations in parameters such as yield strength and true uniform elongation with prior deformation is studied and was found to be analogous to that of initiation fracture toughness determined by independent method. A unique method is used to measure the crack tip deformation characterized by stretch zone depth that also depicted a similar trend. Fracture toughness values derived from the stretch zone depth measurements were found to vary in the same fashion as the experimental values. A semiempirical relationship for obtaining ductile fracture toughness from basic deformation parameters is derived and model is demonstrated to estimate initiation ductile fracture toughness accurately.  相似文献   

16.
There is evidence from certain materials evaluation studies that suggests that low chromium ferritic steels are susceptible to oxide scaling at a gr:ater rate than would have been expected if the steels had been expectsed m a. conventional coal-fired combustor. Such a result is of economic sigmfwance since it tmplles that the changeover point in a superheater from low alloy ferritic to austenitic tubing would have to be at a lower metal temperature than would otherwise be necessary, with consequent Cast penalties. There were, however, some anomalies in the data because of uncertamty over the precise metal temperatures of the steels included in the studtes. A programme of work was therefore established to resolve this problem.

Ferritic steel samples were exposed at carefully controlled metal tempe.ratures under steady state conditions in an AFBC test rig. The scaling characteristics of these samples were compared with data produced under controlled. condttwns m atr. In contrast to earlier, less closely defined tests, the results of thts present study suggest that the oxidation rates of 2.25 wt% Cr-lwt% Mo steel are similar to those expenenced in air and in conventional combustion systems. On this basis the upper temperature limit for use of this steel for in-bed superheater tubes would be set at 560°C. In contrast 9 wt% Cr-l wt% Mo steel showed enhanced oxidation rates, greater than those found in either air or conventional combustion systems, and would appear to offer no advantage over 2.25 wt% Cr-lwt% Mo steel. The possible impact on these recommendations for systems where high chlorine coals will be burned, or where erosion-corrosion effects are likely, is discussed.  相似文献   

17.
Abstract

The temperature dependence of the plane strain fracture toughness of a low carbon, fine grain, ferritic steel for structural applications is investigated. The ductile–brittle transition is found to occur in the interval between 160 and 184 K. The experimental results are interpreted by an analytical model which permits calculation of the plane strain fracture toughness K 1c in the brittle domain as a function of the tensile properties and the cleavage fracture stress, making use of a piecewise approximation for the distribution of tensile stress on the crack axis and applying a deterministic fracture criterion at the stress peak. A similar criterion, which consists of equating the severest strain on the crack axis to a critical strain for cavity nucleation, provides the upper shelf fracture toughness. A relatively simple figure for predicting the transition temperature of steels in this family as a function of material properties can be obtained in this way.  相似文献   

18.
A new model for the high cycle notch fatigue strength prediction of tool steels subjected to axial loading is proposed, based on previous literatures studies and experimental tests carried out on six different tool steels, including rotating bending fatigue tests on notched specimens, fractographic analyses, hardness, residual stress, and roughness measurements. The novelty is the assumption that surface defects are the main cause of notch fatigue failures of such steels. A probabilistic approach was implemented by modeling size distributions of defects, resulting in the prediction of normal distributions of fatigue strength. Like to other previous models, the effect of steel hardness, surface residual stress, notch severity, and specimen size was also taken into account. Model calibration and validation were performed using the data collected by the experimental activity. Model behavior was investigated by performing a sensitivity analysis, aiming to verify the response to variations of the considered input variables. Prediction errors of only 1.3% (on average) and 3.1% (maximum) resulted from the comparison between model-predicted and experimental notch fatigue strength.  相似文献   

19.
This study makes a further investigation on the characteristic distance, minimum fracture toughness and its temperature dependence for cleavage fracture in a C-Mn steel by the detailed finite element analysis combined with experimental observation and measurement. Results show that there is a minimum active zone for cleavage initiation, and the minimum fracture toughness of steel results from the minimum active zone necessary. Corresponding to the minimum fracture toughness, the cleavage fracture ahead of a crack tip can only initiate in a distance range from the minimum distance Xfmin determined by the lower boundary of the active zone to the maximum distance Xfmax determined by its upper boundary. The reason for the occurrence of the minimum active zone and the factors influencing it are analyzed. The temperature dependence of the characteristic distance and minimum fracture toughness and its mechanism are also discussed.  相似文献   

20.
Abstract

This paper is focused on the influence of Ni addition on the microstructure and fracture toughness of structural steels after tempering. Nickel is known to increase the resistance to cleavage fracture of steel and decrease a ductile–brittle transition temperature. The medium carbon, low alloy martensitic steels attain the best combination of properties in low tempered condition, with tempered martensite, retained austenite and transition carbides in the microstructure. In the present research, four model alloys of different Ni contents (from 0·35 to 4·00%) were used. All samples were in as quenched and tempered condition. Quenching was performed in oil at room temperature. After quenching, samples were tempered at 200°C for 2?h. An increase in nickel content in the investigated model structural steels causes a decrease in ε carbide volume fraction in their microstructure. Cementite nucleates independently in the boundaries of martensite laths and in the twin boundaries in the areas where the ε carbide has been dissolved. It was stated that stress intensity factor KIc significantly decreases in the case of the presence of dispersive elongated cementite precipitations at the boundaries of the prior austenite grains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号