首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
For engineering components subjected to multiaxial loading, fatigue life prediction is crucial for guaranteeing their structural security and economic feasibility. In this respect, energy‐based models, integrating the stress and strain components, are widely used because of their availability in fatigue prediction. Through employing the plastic strain energy concept and critical plane approach, a new energy‐based model is proposed in this paper to evaluate the low‐cycle fatigue life, in which the critical plane is defined as the maximum damage plane. In the proposed model, a newly defined NP factor κ*  is used to quantify the nonproportional (NP) effect so that the damage parameter can be conveniently calculated. Moreover, a simple estimation method of weight coefficient is developed, which can reflect different contributions of shear and normal plastic strain energy on total fatigue damage. Experimental data of 10 kinds of materials are employed to assess the effectiveness of this model as well as three other energy‐based models.  相似文献   

2.
The influence of various strain waveforms on the low‐cycle fatigue of IN 718 tested at 650°C has been investigated. The straining paths are accompanied by dwell‐induced creep component(s) or unequal strain distribution in different portions of cycles reducing strength of material. The investigation intends to clarify mainly mechanistic aspects of relaxation‐fatigue interaction. Features of time‐dependent effect induced by nonpeak dwell and the same accompanied by peak dwell, slow unloading from the peak to a lower strain, and different loading and unloading rates are compared in terms of stress amplitude responses, mean stress relaxation, hysteresis loops, life, and damage parameter DC‐F. Softening is common in all the cases, and degree of softening varies linearly with life. The energy‐based life prediction model has been found to work well for the data, and we have introduced energy fraction–based approach to observe simultaneous contribution from both creep and fatigue on life.  相似文献   

3.
Research on fatigue crack formation from a corroded 7075‐T651 surface provides insight into the governing mechanical driving forces at microstructure‐scale lengths that are intermediate between safe life and damage tolerant feature sizes. Crack surface marker‐bands accurately quantify cycles (Ni) to form a 10–20 μm fatigue crack emanating from both an isolated pit perimeter and EXCO corroded surface. The Ni decreases with increasing‐applied stress. Fatigue crack formation involves a complex interaction of elastic stress concentration due to three‐dimensional pit macro‐topography coupled with local micro‐topographic plastic strain concentration, further enhanced by microstructure (particularly sub‐surface constituents). These driving force interactions lead to high variability in cycles to form a fatigue crack, but from an engineering perspective, a broadly corroded surface should contain an extreme group of features that are likely to drive the portion of life to form a crack to near 0. At low‐applied stresses, crack formation can constitute a significant portion of life, which is predicted by coupling macro‐pit and micro‐feature elastic–plastic stress/strain concentrations from finite element analysis with empirical low‐cycle fatigue life models. The presented experimental results provide a foundation to validate next‐generation crack formation models and prognosis methods.  相似文献   

4.
This paper investigates the low‐cycle fatigue resistance of BS 460B and BS B500B steel reinforcing bars and proposes models for predicting their fatigue life based on plastic‐strain (?ap) and total‐strain (?a) amplitudes. Constant‐amplitude, strain‐controlled low‐cycle fatigue tests were carried out on these bars under cyclic load with a frequency of 0.05 Hz. The maximum applied axial strain amplitude (?s,max) ranges from 3 to 10% with zero and non‐zero mean strains. The strain ratios (R = ?s,min/?s,max) used are R =?1, ?0.5 and 0. Hysteresis loops were recorded and plastic and total strain amplitudes were related to the number of reversals (2Nf) to fatigue failure and models for predicting the number of reversals to fatigue failure were proposed. It is concluded that the predicted fatigue life of these bars is very accurate when compared with the measured experimental fatigue life results for wide range of values of strain ratios. It is also observed that based on plastic‐strain amplitude, BS B500B consistently has a longer life (higher number of cycles to failure) than those of BS 460B for all R values; however, at low plastic‐strain amplitudes they tend to behave similarly, irrespective of R value. Other observations and conclusions were also drawn.  相似文献   

5.
The scope of this study is to characterize the mechanical properties of a novel Transformation‐Induced Plasticity bainitic steel grade TBC700Y980T. For this purpose, tensile tests are carried out with loading direction 0, 45 and 90° with respect to the L rolling direction. Yield stress is found to be higher than 700 MPa, ultimate tensile strength larger than 1050 MPa and total elongation higher than 15%. Low‐cycle fatigue (LCF) tests are carried out under fully reverse axial strain exploring fatigue lives comprised between 102 and 105 fatigue cycles. The data are used to determine the parameters of the Coffin–Manson as well as the cyclic stress–strain curve. No significant stress‐induced austenite transformation is detected. The high‐cycle fatigue (HCF) behaviour is investigated through load controlled axial tests exploring fatigue tests up to 5 × 106 fatigue cycles at two loading ratios, namely R = ?1 and R = 0. At fatigue lives longer than 2 × 105 cycles, the strain life curve determined from LCF tests tends to greatly underestimate the HCF resistance of the material. Apparently, the HCF behaviour of this material cannot be extrapolated from LCF tests, as different damage, cyclic hardening mechanisms and microstructural conditions are involved. In particular, in the HCF regime, the predominant damage mechanism is nucleation of fatigue cracks in the vicinity of oxide inclusions, whereby mean value and scatter in fatigue limit are directly correlated to the dimension of these inclusions.  相似文献   

6.
It is widely recognized that the accuracy of notch fatigue calculations can be improved significantly when those calculations are based on the elastic‐plastic response strain at the notch root, as opposed to the remotely applied loads or stresses. Two of the most widely used approximations for this response are Neuber's rule and Glinka's equivalent strain energy density method. In the present work, a survey of some of the many published evaluations of these methods was first conducted, and then, additional detailed comparisons with elastic‐plastic finite element analyses for a series of semicircular and V‐shaped notch configurations were performed. Based on the observed limitations of both the Neuber and Glinka approaches, and with the guidance of the elastic‐plastic finite element results, a new (and more robust) approach for the estimation of notch response strains is proposed. This approach calls for the definition of a generalized notch response curve (GNRC), which is dependent on both the material stress–strain curve and the notch geometry. Once defined, the GNRC allows the determination of the response strain for any applied stress.  相似文献   

7.
In this paper, the shortcomings of the Smith–Watson–Topper (SWT) damage parameter are analysed on the basis of the critical plane concept. It is found that the SWT model usually overestimates the fatigue lives of materials since it only takes into account the fatigue damage caused by the tensile components. To solve this problem, Chen et al. (CXH) modified the SWT model through considering the shear components. However, there are at least two problems present in CXH model: (1) the mean stress is not considered and (2) the different influence of the normal and shear components on fatigue life is not included. Besides, experimental validations show that the modification by Chen et al. usually leads to conservative fatigue life predictions during non‐proportional loading. In order to overcome the shortcomings of SWT and CXH models, a damage parameter as the effective strain energy density (ESED) is proposed. Experimental validations by using eight kinds of materials show that the ESED model can give satisfactory fatigue life predictions under the non‐proportional loading.  相似文献   

8.
This paper details an advanced method of continuous fatigue damage prediction of rubber fibre composite structures. A novel multiaxial energy‐based approach incorporating a mean stress correction is presented and also used to predict the fatigue life of a commercial vehicle air spring. The variations of elastic strain and complementary energies are joined to form the energy damage parameter. Material parameter α is introduced to adapt for any observed mean stress effect as well as being able to reproduce the well‐known Smith‐Watson‐Topper criterion. Since integration to calculate the energies is simplified, the approach can be employed regardless of the complexity of the thermo‐mechanical load history. Several numerical simulations and experimental tests were performed in order to obtain the required stress‐strain tensors and the corresponding fatigue lives, respectively. In simulations, the rubber material of the air spring was simulated as nonlinear elastic. The mean stress parameter α , which controls the influence of the mean stress on fatigue life, was adjusted with respect to those energy life curves obtained experimentally. The predicted fatigue life and the location of failure are in very good agreement with experimental observations.  相似文献   

9.
The fatigue behaviour of an Al–Mg–Si alloy was studied using notched specimens. Fatigue tests were conducted at two stress ratios R= 0 and R= 0.4 on thin plates with a central hole. Constant and block variable loading amplitudes were applied to the specimens using a servo‐hydraulic machine. The applicability of the local strain approach method to the prediction of the fatigue life was investigated for this type of discontinuity. Two methods, the equivalent strain energy density approach and a modified stress–strain intensity field approach, were used to predict the fatigue strength. For the second one an elastic–plastic finite element analysis was carried out in order to obtain the local strain and stress distributions near the notch root. Based on Miner's rule an equivalent stress was used to correlate the fatigue lives for the variable amplitude histories. The experimental results were compared with the predicted results obtained by the two methods investigated and better agreement was found with the stress–strain field intensity approach, while the strain energy approach gave more conservative results. Miner's rule gives a good correlation between the variable amplitude and constant amplitude results.  相似文献   

10.
Mean stress significantly influence the fatigue life predictions of metallic materials. The Walker mean stress equation with its additional material parameter w provides good predictions for a wide range of materials. Unfortunately, additional tests are necessary to determine the Walker exponent w. In order to overcome this shortcoming, for aluminum alloys, the Walker exponent w was correlated linearly with the sum of ultimate tensile strength and true fracture strength. Then, a Walker exponent corrected effective strain energy density criterion was developed by incorporating the Walker mean stress equation into the strain life curve. The capability of fatigue life prediction for the developed model was checked against the tested data of 304 L stainless steel, SAE 1045 steel, 7075‐T651 aluminum alloy, and Incoloy 901 superalloy, and comparisons were also performed by using the Lv's Walker exponent corrected model. The developed model provides more satisfactory results, especially for the considered materials in loading with mean stress.  相似文献   

11.
New method for evaluation of the Manson‐Coffin‐Basquin and Ramberg‐Osgood equations with respect to compatibility A new method for determining the stress‐strain and strain‐life curves for metals is presented. The method involves fitting the curve to experimental data points in a three‐dimensional strain‐stress‐life space. With the plastic part of strain, stress and fatigue life as coordinates, a straight line is used for fitting the experimental data points. The material constants are calculated directly from the directional vector R and the coordinates of the point P , which determines the fitted straight line. It is shown that the assumption of equality of the plastic and elastic components in Manson‐Coffin‐Basquin and Ramberg‐Osgood equations leads to the so called compatibility condition. This new method retains the mathematical and physical relationships between the considered curves. The results obtained from this new method using high‐strength aluminium alloys subjected to different manufacturing conditions and different test temperatures are presented. These results are compared to results obtained with a conventional method for determining the fatigue parameters.  相似文献   

12.
Combined low‐cycle fatigue/high‐cycle fatigue (LCF/HCF) loadings were investigated for smooth and circumferentially V‐notched cylindrical Ti–6Al–4V fatigue specimens. Smooth specimens were first cycled under LCF loading conditions for a fraction of the previously established fatigue life. The HCF 107 cycle fatigue limit stress after LCF cycling was established using a step loading technique. Specimens with two notch sizes, both having elastic stress concentration factors of Kt = 2.7, were cycled under LCF loading conditions at a nominal stress ratio of R = 0.1. The subsequent 106 cycle HCF fatigue limit stress at both R = 0.1 and 0.8 was determined. The combined loading LCF/HCF fatigue limit stresses for all specimens were compared to the baseline HCF fatigue limit stresses. After LCF cycling and prior to HCF cycling, the notched specimens were heat tinted, and final fracture surfaces examined for cracks formed during the initial LCF loading. Fatigue test results indicate that the LCF loading, applied for 75% of total LCF life for the smooth specimens and 25% for the notched specimens, resulted in only small reductions in the subsequent HCF fatigue limit stress. Under certain loading conditions, plasticity‐induced stress redistribution at the notch root during LCF cycling appears responsible for an observed increase in HCF fatigue limit stress, in terms of net section stress.  相似文献   

13.
This study investigates the fatigue characteristics of typical bituminous materials used in road applications. Fatigue testing was performed in a four‐point bending beam test apparatus under controlled strain and stress conditions. Fatigue life was defined using the classical approach as the number of cycles, Nf, to 50% reduction in the initial stiffness modulus. It has also been defined in terms of macro‐crack initiation, N1. A different approach, based on the linear reduction in stiffness during a particular stage of a fatigue test, was introduced to define a damage parameter, and the evolution of this damage parameter with number of cycles was used to characterize fatigue life. Furthermore, refinements to the linear damage model were introduced to take into account the difference in the evolution of dissipated energy between controlled strain and stress testing modes. These modifications have enabled the identification of a unique fatigue damage rate for both controlled strain and stress test modes.  相似文献   

14.
The cyclic strain energy density parameter W for the critical or failure plane has been successfully applied in predicting the multiaxial fatigue life of an iron-base and a nickel-base alloy. This parameter has the advantage of being independent of loading condition, allowing a universal energy-life curve to be determined for a variety of torsion, tension and bending stress and strain states. The critical strain energy density parameter has been verified using experimental data obtained from tubular and notched specimens of SAE-1045 steel and Inconel 718.  相似文献   

15.
The paper deals with the multi‐axial fatigue strength of notched specimens made of 39NiCrMo3 hardened and tempered steel. Circumferentially V‐notched specimens were subjected to combined tension and torsion loading, both in‐phase and out‐of‐phase, under two nominal load ratios, R=?1 and R= 0, also taking into account the influence of the biaxiality ratio, λ=τaa. The notch geometry of all axi‐symmetric specimens was a notch tip radius of 0.1 mm, a notch depth of 4 mm, an included V‐notch angle of 90° and a net section diameter of 12 mm. The results from multi‐axial tests are discussed together with those obtained under pure tension and pure torsion loading on plain and notched specimens. Furthermore the fracture surfaces are examined and the size of non‐propagating cracks measured from some run‐out specimens at 5 million cycles. Finally, all results are presented in terms of the local strain energy density averaged in a given control volume close to the V‐notch tip. The control volume is found to be dependent on the loading mode.  相似文献   

16.
In engineering practice, it is generally accepted that most of components are subjected to multiaxial stress‐strain state. To analyse this complicated loading state, different types of specimens of 2A12 (2124 in the United States) aluminium alloy were tested under multiaxial loading conditions and a new multiaxial fatigue analysis method for the state of three‐dimensional stress and strain is proposed. Elastic‐plastic finite element method (FEM) and a proposed vector computing method are used to describe the loading state at the critical point of specimen, by which the parameter ΓT is calculated at the new defined subcritical plane to consider the effect of additional cyclic hardening. Meanwhile, the principal equivalent strain is still calculated at the traditional critical plane. The new damage parameter is composed of different process parameters, by which the dynamic path of strain state, including loading environments and material properties, are fully considered in one loading cycle. According to experimental verifications with 2A12 aluminium alloy, the results show that the proposed method shows satisfactory, accurate, and reliable results for multiaxial fatigue life prediction in the state of three‐dimensional stress and strain.  相似文献   

17.
The stress intensity factor concept for describing the stress field at pointed crack or slit tips is well known from fracture mechanics. It has been substantially extended since Williams' basic contribution (1952) on stress fields at angular corners. One extension refers to pointed V‐notches with stress intensities depending on the notch opening angle. The loading‐mode‐related simple notch stress intensity factors K1, K2 and K3 are introduced. Another extension refers to rounded notches with crack shape or V‐notch shape in two variants: parabolic, elliptic or hyperbolic notches (‘blunt notches’) on the one hand and root hole notches (‘keyholes’ when considering crack shapes) on the other hand. Here, the loading‐mode‐related generalised notch stress intensity factors K1ρ, K2ρ and K3ρ are defined. The concepts of elastic stress intensity factor, notch stress intensity factor and generalised notch stress intensity factor are extended into the range of elastic–plastic (work‐hardening) or perfectly plastic notch tip or notch root behaviour. Here, the plastic notch stress intensity factors K1p, K2p and K3p are of relevance. The elastic notch stress intensity factors are used to describe the fatigue strength of fillet‐welded attachment joints. The fracture toughness of brittle materials may also be evaluated on this basis. The plastic notch stress intensity factors characterise the stress and strain field at pointed V‐notch tips. A new version of the Neuber rule accounting for the influence of the notch opening angle is presented.  相似文献   

18.
In this study the compressive cyclic behavior of bovine cancellous bone and three open‐cell metallic foams including AlSi7Mg foams (30 and 45 ppi) and CuSn12Ni2 foam (30 ppi) has been investigated. Multi‐step fatigue tests are carried out to study the deformation behavior under increasing compressive cyclic stresses. Short multi‐step tests, with steps of 300–500 cycles, are used to identify the cyclic yield stress (σcy) and the stress at failure (σfail). The residual strain accumulation, or cyclic creep, is observed during these tests. Long multi‐step tests, with 5000 cycles at selected stress ranges (0.4σcy, 0.6σcy, 0.8σcy, and σcy), are also carried out to study further the compressive fatigue behavior of the materials. Scanning electron microscopy (SEM) has been used to characterize the microstructure of the foams and the bone prior to and post mechanical testing. Particular attention is paid to the role of cyclic creep and buckling in the failure processes. The results show that residual strain accumulation seems to be the predominant driving force leading to failure of foams and bones. Although foams and bone fail by the same mechanism of cyclic creep, the deformation behavior at the transient region of each step is different for both materials. The maximum strain εmax of foams decrease suddenly during the change of each step. This behavior may be explained by the rapidly developing microdamage in the cell struts that occur at the transient region of each step. Bones show more gradual decrease of εmax, where microdamage may be accumulated progressively during the fatigue test.  相似文献   

19.
Fatigue failure, ratcheting behaviour and influence of pre‐fatigue on fatigue behaviour were investigated under uniaxial cyclic loading for CK45 steel at room temperature. The fatigue life was recorded for various stress ratios, and then, three mean stress models were considered. The Walker model showed an acceptable accuracy in comparison with Smith–Watson–Topper and Park et al. models. The ratcheting strains were measured for various loading conditions in order to evaluate the impact of mean stress, stress amplitude and stress ratio on ratcheting behaviour. The experimental results showed that the ratcheting strain increased with increasing mean stress, stress amplitude and stress ratio. In addition, the results of the post‐ratcheting‐fatigue tests showed that although the fatigue life decreased with increasing pre‐ratcheting strain (the ratcheting strain that is accumulated in pre‐fatigue), the loading condition that pre‐fatigue experiments were conducted has a significant effect on subsequent fatigue behaviour.  相似文献   

20.
This paper presents the possibility of using the reverse magnetostriction (Villari) effect in fatigue testing of ferromagnetic materials. The tests were conducted on cyclically loaded nickel with no auxiliary external magnetic field. The following properties were determined: magnetic induction B, magnetic field strength H, energy of the magnetic hysteresis loop ΔM (in the B–H coordinate system), plus such mechanical quantities as stress σ, strain ?, plastic strain ?p and energy of the mechanical hysteresis loop ΔW (in the σ–? coordinate system). A variety of magneto-mechanical characteristics are presented and their susceptibility to loading parameters of the fatigue process are discussed. A relationship between ΔW and ΔM is demonstrated. The Villari effect is shown to be especially useful in determining the cyclic yield limit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号