首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Immobilized lipase, IM60, from Rhizomucor miehei was used as a biocatalyst for the incorporation of capric acid (C10:0) into fish oil originally containing 40.9 mol% eicosapentaenoic (20:5n-3) and 33.0 mol% docosahexaenoic (22:6n-3) acid. Acidolysis was performed with and without organic solvent. Pancreatic lipase-catalyzed sn-2 positional analysis was performed after enzymatic modification. Tocopherol analysis was performed before and after enzymatic modification. Products were analyzed by gas-liquid chromatography. After a 24-h incubation in hexane, there was an average of 43.0±1.6 mol% incorporation of C10:0 into fish oil, while 20:5 and 22:6 decreased to 27.8±2.2 and 23.5±1.3 mol%, respectively. The solvent-free reaction produced an average of 31.8±8.5 mol% C10:0 incorporation, while 20:5 and 22:6 decreased to 33.2±3.3 and 28.3±3.9 mol%, respectively. The effect of incubation time, substrate molar ratio, enzyme load, and added water were also studied. In general, as the enzyme load, molar ratio, and incubation time increased, mol% C10:0 incorporation also increased. The optimal mol% C10:0 incorporation was 41.2% at 48 h for the reaction in hexane and 46.4% at 72 h for the solvent-free reaction. The highest C10:0 incorporation (65.4 mol%) occurred at a molar ratio of 1:8 (fish oil triacylglycerols/capric acid) in hexane. For the solvent-free reaction, the optimal mol% C10:0 incorporation (56.1 mol%) occurred at a molar ratio of 1:6. An enzyme load of 10% gave the highest mol% C10:0 incorporation (41.4 mol%) in hexane; the highest incorporation (38.3 mol%) for the solvent-free reaction occurred at 15% enzyme load. Mol% incorporation of C10:0 declined with increasing amounts of added water. The optimal mol% C10:0 incorporation occurred at 1% added water (47.9 mol%) for the reaction in hexane, and at zero added water for the solvent-free reaction (21.8 mol%). Fish oil containing capric acid was successfully produced and may be nutritionally more beneficial than unmodified oil.  相似文献   

2.
Two-kilogram quantities of structured lipids (SL) of menhaden fish and canola oils containing caprylic acids (8∶0) were produced in a laboratory-scale packed-bed bioreactor by acidolysis catalyzed by an immobilized lipase, Lipozyme IM, from Rhizomucor miehei. SL were characterized and their oxidative stabilities investigated. The SL contained 29.5% 8∶0 for fish oil and 40.15 for canola oil. Polyunsaturated fatty acids (PUFA) of fish oil remained unchanged after the modification while PUFA of canola oil were reduced from 29.6 to 21.2%. Monoenes, especially 18∶1n−9, were completely replaced by 8∶0 in fish oil and reduced from 61.9 to 34.7% in canola oil. Downstream processing of enzymatically produced SL led to loss in natural total tocopherol contents of the fish and canola oils. The effects of antioxidants such as α-tocopherol (TOC), tert-butylhydroxyquinone (TBHQ), and combinations thereof on the oxidative stability of SL were investigated. SL were analyzed for oxidative stability index, peroxide value, conjugated diene content, free fatty acid content, iodine value, saponification number, and thiobarbituric acid value. Iodine value of unmodified fish oil (154.71) was reduced to 144.10 and that of canola oil (114.49) to 97.27 after modification. The SN increased from 183.72 to 242.63 for fish oil and from 172.50 to 227.90 for canola oil. TBHQ exhibited better antioxidant effects than TOC. A combination of TBHQ/TOC also proved to be an effective antioxidant for SL. We suggest the addition of antioxidants to enzymatically produced and purified SL.  相似文献   

3.
There are indications in the recent literature that the location of polyunsaturated fatty acids, such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), in triacylglycerols (TAG) may influence their oxidative stability. To address that question, two types of structured lipids were designed and synthesized: firstly, a TAG molecule possessing pure EPA or DHA at the mid-position with stearic acid at the outer positions; and secondly, a TAG molecule possessing pure EPA or DHA located at one of the outer positions with stearic acid at the mid-position and the remaining end position. The former adduct was synthesized in two steps by a chemoenzymatic approach. In the first step 1,3-distearolyglycerol was afforded in good yield (74%) by esterifying glycerol with two equivalents of stearic acid in ether in the presence of silica gel using LipozymeTM as a biocatalyst. This was followed by a subsequent chemical esterification with pure EPA or DHA using 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide as a coupling agent in the presence of 4-dimethylaminopyridine in dichloromethane in excellent yields (94 and 91, respectively). The latter adduct was synthesized in two enzymatic steps. In the first step tristearoylglycerol was prepared in very high yield (88%) by esterifying glycerol with a stoichiometric amount of stearic acid under vacuum at 70–75°C using an immobilized Candida antarctica lipase without a solvent. That adduct was subsequently treated in an acidolysis reaction with two equivalents of EPA or DHA without solvent at 70–75°C or in toluene at 40°C in the presence of Lipozyme to afford the desired product in moderate yields (44 and 29%, respectively). This work was presented at the Biocatalysis Symposium in April 2000, held at the 91st Annual Meeting and Expo of the American Oil Chemists’ Society, San Diego, CA.  相似文献   

4.
Traditional sunflower oil (SO), randomized lipid (RL) and specific structured lipid (SL), both produced from SO and tricaprylin/caprylic acid, respectively, were stored for up to 12 wk to compare their oxidative stabilities by chemical and sensory analyses. Furthermore, the effect of adding a commercial antioxidant blend Grindox 117 (propyl gallate/ citric acid/ascorbyl palmitate) or gallic acid to the SL was investigated. The lipid type affected the oxidative stability: SL was less stable than SO and RL. The reduced stability was most likely caused by both the structure of the lipid and differences in production/ purification, which caused lower tocopherol content and higher initial levels of primary and secondary oxidation products in SL compared with RL and SO. Grindox 117 and gallic acid did not exert a distinct antioxidative effect in the SL oil samples during storage.  相似文献   

5.
Milk drinks containing 5% traditional sunflower oil (SO), randomized lipid (RL) or specific structured lipid (SL) (both produced from SO and tricaprylin/caprylic acid) were compared with respect to their particle size, viscosity and oxidative stability during storage. Furthermore, the effect of adding potential antioxidants EDTA or gallic acid to the milk drink based on SL was investigated. The lipid type significantly affected the oxidative stability of the milk drinks: Milk drink based on SL oxidized faster than milk drink based on RL or SO. The reduced oxidative stability in the SL milk drink could not be ascribed to a single factor, but was most likely influenced by the structure of the lipid and differences in the process applied to produce and purify the lipids. EDTA was a strong antioxidant, while gallic acid did not exert a distinct antioxidative effect in the milk drink based on SL.  相似文献   

6.
Two different structured lipids (SL) were synthesized by transesterifying tristearin with caprylic acid (C8∶0) or oleic acid (C18∶1). The objective was to synthesize SL containing stearic acid (C18∶0) at the sn-2 position as possible nutritional and low-calorie fats. The reaction was catalyzed by IM60 lipase from Rhizomucor miehei in the presence of n-hexane. The effects of reaction parameters affecting the incorporation of caprylic acid into tristearin were compared with those for incorporating oleic acid into tristearin. For all parameters studied, oleic acid incorporation was higher than caprylic acid. The range of conditions favorable for synthesizing high yields of C8∶0-containing SL was narrower than for oleic acid. An incubation time of 12–24 h and an enzyme content of 5% (w/w total substrates) favored C8∶0 incorporation. The mole percentage of incorporated C18∶1 did not increase further at enzyme additions greater than 10%. C18∶1 incorporation decreased with the addition of more than 10% water (w/w total substrates) to the tristearin-oleic acid reaction mixture. Increasing the mole ratio of fatty acid (FA) to triacylglycerol increased oleic acid incorporation. The highest C8∶0 incorporation was obtained at a 1∶6 mole ratio of tristearin to FA. Positional analysis confirmed that C18∶0 remained at the sn-2 position of the synthesized SL. The melting profiles of tristearin-caprylic acid and tristearin-oleic acid SL displayed peaks between −20 to 30°C and −20 to 40°C, respectively. Their solid fat contents (∼25%) at 25°C suggest possible use in spreads or for inclusion with other fats in specialized blends.  相似文献   

7.
Mayonnaise based on enzymatically produced specific structured lipid (SL) from sunflower oil and caprylic acid was compared with mayonnaise based on traditional sunflower oil (SO) or chemically randomized lipid (RL) with respect to their oxidative stability, sensory and rheological properties. Furthermore, the potential antioxidative effect of adding lactoferrin, propyl gallate or EDTA to the mayonnaise with SL was also investigated. Mayonnaise based on SL oxidized faster than mayonnaise based on RL or SO. The reduced oxidative stability in the SL mayonnaise could not be ascribed to a single factor, but was most likely influenced by the structure of the lipid, the lower tocopherol content and the higher initial levels of lipid hydroperoxides and secondary volatile oxidation compounds in the SL itself compared with the RL and traditional sunflower oil employed. EDTA was a strong antioxidant, while propyl gallate and lactoferrin did not exert any antioxidative effect in the SL mayonnaise.  相似文献   

8.
Two immobilized lipases, nonspecific SP435 from Candida antarctica and sn-1,3 specific IM60 from Rhizomucor miehei, were used as biocatalysts for the restructuring of borage oil (Borago officinalis L.) to incorporate capric acid (10:0, medium-chain fatty acid) and eicosapentaenoic acid (20:5n-3) with the free fatty acids as acyl donors. Transesterification (acidolysis) reactions were carried out in hexane, and the products were analyzed by gas-liquid chromatography. The fatty acid profiles of the modified borage oil were different from that of unmodified borage oil. Higher incorporation of 20:5n-3 (10.2%) and 10:0 (26.3%) was obtained with IM60 lipase, compared to 8.8 and 15.5%, respectively, with SP435 lipase. However, SP435 lipase was able to incorporate both 10:0 and 20:5n-3 fatty acids at the sn-2 position, but the IM60 lipase did not. Solvents with log P values between 3.5 and 4.5 supported the acidolysis reaction better than those with log P values between −0.33 and 3.0.  相似文献   

9.
Structured lipids produced by enzymatic or chemical methods for different applications have been receiving considerable attention. The oxidative stability of a randomized structured lipid (RFO), produced by chemical interesterification from fish oil (FO) and tricaprylin, and a specific structured lipid (SFO), produced by enzymatic interesterification from the same oil and caprylic acid, was compared with the stability of FO. Oils were stored at 2°C for 11 wk followed by storage at 20°C for 6 wk. In addition, the antioxidative effect of adding the metal chelators EDTA or citric acid to SFO was investigated. FO contained the largest amount of PUFA and RFO the lowest. However, SFO had a higher PV initially and during storage at 2°C, whereas the PV of FO was highest during storage at 20°C. The level of volatile oxidation products was highest in SFO during the entire storage period, and off-flavors were more pronounced in SFO. The lower oxidative stability of SFO was probably related to the initially lower quality (regarding oxidation products), which is apparently a result of the long production procedure required. Addition of metal chelators did not reduce the oxidation of the SFO.  相似文献   

10.
Structured lipids were synthesized by acidolysis of perilla oil and caprylic acid using two lipases, Lipozyme RM IM from Rhizomucor miehei and Lipozyme TL IM from Thermomyces lanuginosa. Effects of molar ratio, reaction time, reaction temperature, enzyme load, and solvent content on acidolysis reactions were studied. The solvent content ranged from 0.0 (solvent-free) to 85.3%. The results showed that the incorporation increased in parallel with solvent content to 49.0% with Lipozyme RM IM and to 63.8% with Lipozyme TL IM. After 24 h incubation in n-hexane, caprylic acids were incorporated to 48.5 mol% with Lipozyme RM IM and to 51.4 mol% with Lipozyme TL IM, respectively, whereas linolenic acid content was reduced from 61.4 to 31.5 mol% with Lipozyme RM IM and to 28.4 mol% with Lipozyme TL IM, respectively. Lipozyme TL IM showed a higher acyl migration rate than Lipozyme RM IM when acidolysis was performed in the reaction system containing n-hexane as a solvent, whereas the difference in acyl migration between the two lipases in the solvent-free system was negligible.  相似文献   

11.
Seven solvent mixtures have been used to extract the lipid fraction of lyophilized biomass ofIsochrysis galbana. Six of them were composed of biocompatible solvents. Each method was carried out under relaxed operating conditions (i.e., one hour at room temperature) with extraction in a nitrogen atmosphere to prevent autooxidation and degradation of polyunsaturated fatty acids (PUFAs). Apart from the well-established Bligh and Dyer method [Can. J. Biochem. Physiol. 37:911 (1959)] (Cl3CH/MeOH/H2O, 1∶2∶0.8, vol/vol/vol), which rendered the highest yield of lipids (93.8%), ethanol (96%) and hexane/ethanol (96%), 1∶2.5 vol/vol produced the best results (84.4 and 79.6%, respectively). To obtain free fatty acids, KOH was added to the solvent mixtures used to extract the total lipids, except for Cl3CH/MeOH/H2O, and direct saponification was carried out at 60°C for 1 h or at room temperature for 8 h. The highest yields obtained by direct saponicification were 81% with hexane/ethanol (96%), 1∶2.5, vol/vol and 79.8% with ethanol (96%). Partial yields of the mainn-3 PUFAs found inI. galbana, stearidonic acid (SA), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), were calculated for both extraction methods. For lipid extraction with ethanol (96%), yields of 91, 82 and 83% were obtained for SA, EPA and DHA, respectively. When direct saponification was used, hexane/ethanol (96%; 1∶2.5, vol/vol) produced the best yields of (91, 79 and 69% for SA, EPA and DHA, respectively).  相似文献   

12.
Several triacylglycerols (TAG) that contained eicosapentaenoic acid (EPA) were chemically synthesized and stored at 25°C to assess the influence of TAG structure on oxidative stability and formation of oxidation products. Oxidative stability was evaluated by oxygen consumption during storage of the TAG. Autoxidation products of TAG were analyzed by high-performance liquid chromatography (HPLC) and liquid chromatography-mass spectrometry (LC-MS). Results showed that a 2:1 (mole/mole) mixture of trieicosapentaenoylglycerol (EEE) and tripalmitoylglycerol (PPP) was most susceptible to autoxidation. The oxidative stability of TAG that contained EPA and palmitic acid was negatively correlated with the moles of EPA in a single TAG molecule. When TAG with one EPA and two other fatty acids were oxidized, chainlength of constituent fatty acids hardly affected the oxidative stability of EPA-containing TAG molecules, except for stearic acid. HPLC and LC-MS analyses showed that monohydroperoxides were major oxidation products regardless of type of TAG. Bis- and tris-hydroperoxides were formed during autoxidation of EEE and dieicos-apentaenoylpalmitoylglycerol. Monohydroperoxy epidioxides were found in all autoxidized TAG. These observations suggested that TAG structure affected the oxidation of TAG with highly unsaturated fatty acids.  相似文献   

13.
To obtain enhanced incorporation of highly unsaturated fatty acids and recovery of glycerolipid products, organic solvents with high dielectric constants (water mimics) were substituted for part of the essential water for lipase activation to study their effect on acidolysis and transesterification. In acidolysis/transesterification of fish oil triglycerides and eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), Lipozyme IM-60 with ethylene glycol as a water mimic enhanced the incorporation of EPA and suppressed the hydrolysis of synthesized glycerolipid. On the other hand, transesterification between soy phosphatidylcholine and EPA was enhanced by a water and propylene glycol combination. In a nonaqueous medium that contained appropriate amounts of water and organic solvents (water mimics), Lipozyme IM-60 increased transesterification of EPA into soy phosphatidylcholine. Simultaneously, the recovered glycerolipid products showed decreased hydrolysis of newly synthesized EPA- and DHA-containing glycerolipids.  相似文献   

14.
Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) were incorporated into groundnut oil by interesterification with a 1,3-specific lipase fromMucor miehei. The resultant EPA and DHA concentrations of the groundnut oil were 9.5 and 8.0%, respectively.  相似文献   

15.
Structured lipids were successfully synthesized by lipase-catalyzed transesterification (ester interchange) of caprylic acid ethyl ester and triolein. The transesterification reaction was carried out in organic solvent as reaction media. Eight commercially-available lipases (10% w/w substrates) were screened for their ability to synthesize structured lipid by incubating with 100 mg triolein and 78.0 mg caprylic acid ethyl ester in 3 mL hexane at 45°C for 24 h. The products were analyzed by reverse-phase high-performance liquid chromatography with evaporative light-scattering detector. Immobilized lipase IM60 fromRhizomucor miehei converted most triolein into structured lipids (41.7% dicapryloolein, 46.0% monocapryloolein, and 12.3% unreacted triolein). However, lipase SP435 fromCandida antarctica had a higher activity at higher temperature. The reaction catalyzed by lipase SP435 yielded 62.0% dicapryloolein, 33.5% monocapryloolein, and 4.5% unreacted triolein at 55°C. Time course, incubation media, added water, and substrate concentration were also investigated in this study. The results suggest that lipase-catalyzed transesterification of long-chain triglycerides and medium-chain fatty acid ethyl ester is feasible to synthesize structured lipids.  相似文献   

16.
Thirteen synthetic triacylglycerols (TAG) containing eicosapentaenoic acid (EPA) or docosahexaenoic acid (DHA) were oxidized in the presence of 2,2′-azobis(2,4-dimethyl-valeronitrile) (AMVN) and 2,2′-azobis(2-amidinopropane)dihydrochloride (AAPH) as aqueous and nonaqueous radical initiators to investigate the influence of TAG structure and oxidation system on the oxidative stability of TAG that contain highly unsaturated fatty acids (HUFA). A 2:1 (mol/mol) mixture of trieicosapentaenoylglycerol and tripalmitoylglycerol was most susceptible to the AMVN-initiated oxidation among three types of TAG that contained EPA and palmitic acid (2:1, mol/mol). Compared with 1,2 (or 2,3)-dieicosapentaenoyl-3(or 1)-palmitoylglycerol (EEP) and 1,3-dieicosapentaenoyl-2-palmitoylglycerol (EPE), the oxidative rate of EEP was somewhat higher. A similar result was obtained for DHA-containing TAG. The oxidative rate of TAG that contained EPA and palmitic acid (1:2, mol/mol) showed a positive correlation with the amount of EPA in a single TAG molecule. Moreover, in the nonaqueous system, the oxidative rate of EPA-containing TAG was affected by unsaturation and carbon chainlength of constituent fatty acids. In the AAPH-initiated oxidation in the aqueous system, the oxidative rate of TAG with EPA and palmitic acid was higher with the increased quantity of EPA in a single TAG molecule. Also, constituent fatty acids modified the oxidative rate of EPA-containing TAG in an aqueous system. The glycerol position of EPA and DHA also affected the oxidative rate of the TAG. EPA and DHA located at the 1,2 (or 2,3)-position of glycerol were more oxidizable than those at the 1,3-position during AAPH-initiated oxidation. Thus, 1,2(or2,3)-dipalmitoyl-3(or 1)-eicosapentaenoylglycerol was oxidized faster than 1,3-dipalmitoyl-2-eicosapentaenoylglycerol. These observations suggest that the oxidative stability of TAG that contain HUFA could be modulated by the oxidation system and TAG structure.  相似文献   

17.
Structured lipids were synthesized by transesterification of peanut oil and caprylic acid in a stirred-batch reactor. Different substrate molar ratios (1:1 to 1:4, peanut oil/caprylic acid) were used. The reaction was performed for 72 h at 50°C catalyzed by IM60 lipase from Rhizomucor miehei (10 g, 2% w/w substrate) in the absence of organic solvent. The highest incorporation of caprylic acid was obtained with a 1:2 molar ratio (peanut oil/caprylic acid) after 72 h reaction. With a 1:2 molar ratio, the incorporation increased by 28% from 1:1. On the other hand, a 1:4 molar ratio gave the lowest incorporation during the reaction. The effect of different mixing speeds (200, 640, or 750 rpm) on reaction was studied with a 1:2 substrate molar ratio for 24 h. A high incorporation of caprylic acid (14.3 mol%) was obtained at 640 rpm, while 200 rpm gave the lowest incorporation (2.2 mol%), suggesting that good mixing is essential in a stirred-batch reactor. After 24 h of reaction at different rpm, IM60 lipase was recovered, washed with hexane, and reacted with substrates to study its stability after reaction at different mixing speeds. The results showed that caprylic acid incorporation was similar (24.9, 24.3, 24.2 mol%) at 200, 640, and 750 rpm, respectively. When 20 g of IM60 lipase (4% w/w substrate) instead of 10 g was used in a 1:1 substrate molar ratio reaction, the incorporation of caprylic acid increased by 26% after 72 h. To study enzyme reuse, 10 g of IM60 lipase was used in a 1:1 substrate molar ratio for 24 h at 640 rpm. The incorporation of caprylic acid gradually decreased with increased number of reuses. During five times of reuse, 15, 13.9, 9.6, 6.7, and 9.7 mol% of caprylic acid were incorporated into peanut oil, respectively.  相似文献   

18.
The influence of the molar ratio caprylic acid/triolein, enzyme concentration and water content on the kinetics of the interesterification reaction of triolein (TO) and caprylic acid (CA) were studied. The enzyme used was the 1,3‐specific Rhizomucor miehei lipase. Data modelling was based on a simple scheme in which the acid was only incorporated in positions 1 and 3 of the glyceride backbone. In addition, it was assumed that positions 1 and 3 of the triglycerides were equivalent and that the events at position 1 did not depend on the nature of the fatty acid in position 3 and vice versa. Monoglycerides and diglycerides were not detected during the experiments. This was attributed to the low water content of the immobilised enzyme particles. The value of the equilibrium constant, K, for the exchange of caprylic and oleic acids was 2.7, which indicated that the incorporation of caprylic acid into triglycerides was favoured compared with the incorporation of oleic acid. Simple first order kinetics could describe the interesterification reaction. Using this model and the calculated equilibrium constant, the apparent kinetic constants were calculated. The model fitted all the experimental data except for the CA/TO molar ratios larger than 6. Moreover, the interesterification reaction rate had a maximum value at CA/TO molar ratios of 4–6 mol mol?1. Copyright © 2003 Society of Chemical Industry  相似文献   

19.
An attempt was made to produce structured lipids containing essential fatty acid by acidolysis with 1,3-positional specificRhizopus delemar lipase. The lipase was immobilized on a ceramic carrier by coprecipitation with acetone and then was activated by shaking for 2 d at 30°C in a mixture of 5 g safflower or linseed oil, 10 g caprylic acid, 0.3 g water and 0.6 g of the immobilized enzyme. The activated enzyme was transferred into the same amount of oil/caprylic acid mixture without water, and the mixture was shaken under the same conditions as for the activation. By this reaction, 45–50 mol% of the fatty acids in oils were exchanged for caprylic acid, and the immobilized enzyme could be reused 45 and 55 times for safflower and linseed oils, respectively, without any significant loss of activity. The triglycerides were extracted withn-hexane after the acidolysis and then were allowed to react again with caprylic acid under the same conditions as mentioned above. When acidolysis was repeated three times with safflower oil as a starting material, the only products obtained were 1,3-capryloyl-2-linoleoylglycerol and 1,3-capryloyl-2-oleoyl-glycerol, with a ratio of 86∶14 (w/w). Equally, the products from linseed oil were 1,3-capryloyl-2-α-linolenoyl-glycerol, 1,3-caprylol-2-linoleoyl-glycerol, and 1,3-capryloyl-2-oleoly-glycerol (60∶22∶18, w/w/w). All fatty acids at the 1,3-positions in the original oils were exchanged for caprylic acid by the repeated acidolyses, and the positional specificity ofRhizopus lipase was also confirmed to be strict.  相似文献   

20.
Concentrates of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) were heated at 140–240 °C for 2–8 h under nitrogen. The trans isomers were analysed by gas chromatography‐mass spectrometry on a BPX‐70 cyanopropyl column. All geometrical isomers of EPA and DHA with one trans double bond were observed. The rate constants (k) for the isomerisation of the all‐cis isomers were calculated and found to be higher than previously reported for linoleic acid and α‐linolenic acid. Arrhenius plots showed a linear relationship between ln k and the reciprocal absolute temperature above 180 °C. The distribution patterns of isomers with one trans double bond are approximately constant up to a degree of isomerisation of 25%. The degree of isomerisation can therefore be estimated from selected trans peaks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号