首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The kinetics of destruction of Listeria monocytogenes Scott A in semi-skim milk heated at 55, 58, 60 and 62°C without and with addition of 900, 1400 and 1800 ppm of vanillin was studied. Survival curves displayed an initial shoulder phase followed by an accelerating killing phase. Addition of vanillin to semi-skim milk heated between 55 and 62°C reduced the heat resistance of L. monocytogenes, effect that was more evident at the lowest temperatures. Two kinetic inactivation models were used to fit the data: the shoulder+log-linear model and the Weibull model. The presence of vanillin increased the death rate and reduced the shoulder length of L. monocytogenes in milk when working at low temperatures, while at the highest temperatures, this effect was less evident. Weibull model also showed that at lower temperatures 55°C-58°C, the population was inactivated at different treatment times, leaving a larger proportion of resistant microorganisms. Increasing the heating temperature to 60°C and 62°C, the biggest proportion of the population was destroyed in a very short time, while a very little proportion with higher resistance remained viable. Results suggest that the use of subinhibitory concentrations of vanillin added in combination with mild heat treatment could be used to enhance the inactivation of L. monocytogenes in semi-skim milk.  相似文献   

2.
New Zealand has a high rate of reported campylobacteriosis compared with other developed countries. One possible reason is that local strains have greater heat tolerance and thus are better able to survive undercooking; this hypothesis is supported by the remarkably high D-values reported for Campylobacter jejuni in The Netherlands. The objective of this study was to investigate the thermal inactivation of isolates from New Zealand in broth, using strains that are commonly found in human cases and food samples in New Zealand. Typed Campylobacter strains were heated to a predetermined temperature using a submerged-coil heating apparatus. The first-order kinetic model has been used extensively in the calculation of the thermal inactivation parameters, D and z; however, nonlinear survival curves have been reported, and a number of models have been proposed to describe the patterns observed. Therefore, this study compared the conventional first-order model with eight nonlinear models for survival curves. Kinetic parameters were estimated using both one- and two-step regression techniques. In general, nonlinear models fit the individual inactivation data sets better than the log-linear model. However, the log-linear and the (nonlinear) Weibull models were the only models that could be successfully fitted to all data sets. For seven relevant New Zealand C. jejuni strains, at temperatures from 51.5 to 60°C, D- and z-values were obtained, ranging from 1.5 to 228 s and 4 to 5.2°C, respectively. These values are in broad agreement with published international data and do not indicate that the studied New Zealand C. jejuni strains are more heat resistant than other strains, in contrast with some reports from The Netherlands.  相似文献   

3.
Pulsed UV light inactivation of Salmonella Typhimurium on unpackaged and vacuum-packaged chicken breast, Listeria monocytogenes on unpackaged and vacuum-packaged chicken frankfurters, and Salmonella Enteritidis on shell eggs was explained by log-linear and Weibull models using inactivation data from previous studies. This study demonstrated that the survival curves of Salmonella Typhimurium and L. monocytogenes were nonlinear exhibiting concavity. The Weibull model was more successful than the log-linear model in estimating the inactivations for all poultry products evaluated, except for Salmonella Enteritidis on shell eggs, for which the survival curve was sigmoidal rather than concave, and the use of the Weibull model resulted in slightly better fit than the log-linear model. The analyses for the goodness of fit and performance of the Weibull model produced root mean square errors of 0.059 to 0.824, percent root mean square errors of 3.105 to 21.182, determination coefficients of 0.747 to 0.989, slopes of 0.842 to 1.042, bias factor values of 0.505 to 1.309, and accuracy factor values of 1.263 to 6.874. Overall, this study suggests that the survival curves of pathogens on poultry products exposed to pulsed UV light are nonlinear and that the Weibull model may generally be a useful tool to describe the inactivation patterns for pathogenic microorganisms affiliated with poultry products.  相似文献   

4.
Homogenization is used widely in the dairy industry to improve product stability and quality. High-pressure homogenization (HPH) of fluid foods up to pressures of 300 MPa has demonstrated excellent potential for microbial inactivation. Microbial inactivation can be enhanced during HPH with the inclusion of antimicrobial compounds. Escherichia coli K-12 cells, grown statically or in chemostat, were exposed to HPH processing pressures of 50 to 350 MPa in the absence or presence of the antimicrobial nisin. Valve temperature was regulated by a water bath and pressure, and temperature data were recorded continuously after process initiation. Survivors were enumerated via plating on nonselective growth media. Pressure and temperature at the valve outlet port exhibited a quadratic relationship (R(2) = 0.9617, P < 0.05). Significant HPH-induced inactivation of the gram-negative microorganism was observed in the range of 100 to 250 MPa. Above 300 MPa, heat was the main factor promoting microbial inactivation, regardless of whether cells were grown in chemostat or statically. Chemostat-grown cells were significantly (P < 0.05) more resistant to HPH processing than were statically grown cells. Data indicate potential synergistic effects of nisin and HPH on the inactivation of bacterial contaminants. This study represents the first report of inactivation of a bacterium with HPH pressures in excess of 300 MPa in the presence and absence of an antimicrobial.  相似文献   

5.
The inactivation of Escherichia coli MG1655 was studied at 256 different pressure (150-600 MPa)-temperature (5-45 degrees C) combinations under isobaric and isothermal conditions in Hepes-KOH buffer (10 mM, pH 7.0) and in fresh carrot juice. A linear relationship was found between the log10 of inactivation and holding time for all pressure-temperature combinations in carrot juice, with R2-values>or=0.91. Decimal reduction times (D-values), calculated for each pressure-temperature combination, decreased with pressure at constant temperature and with temperature at constant pressure. Further, a linear relationship was found between log10D and pressure and temperature. A first order kinetic model, describing log10D in carrot juice as a function of pressure and temperature was formulated that allows to identify process conditions (pressure, temperature, holding time) resulting in a desired level of inactivation of E. coli. For Hepes-KOH buffer, the Weibull model more accurately described the entire set of inactivation curves of E. coli MG1655 compared to the log-linear or the biphasic model. Several secondary models (first and second order polynomial and Weibull) were evaluated, but all had poor fitting capacities. When the Hepes-KOH dataset was limited to 22 of the 34 pressure-temperature combinations, a first order model was appropriate and enabled us to use the same model structure as for carrot juice, for comparative purposes. The major difference in kinetic behaviour of E. coli in buffer and in carrot juice was that inactivation rate as a function of temperature showed a minimum around 20-30 degrees C in buffer, whereas it increased with temperature over the entire studied temperature range in carrot juice.  相似文献   

6.
The number of data sets available in literature regarding inactivation kinetic of microorganisms at low temperature, demonstrate an increasing attention to new technologies for food preservation at ambient temperature. Nevertheless, no reliable modeling, capable to describe complex inactivation curves, such as the ones due to dense gas pasteurization with a log-linear behavior, have been developed thus far. In this respect, the main aim of this work is to analyze and model experimental data of dense carbon dioxide yeast pasteurization of natural apple juice at different condition of temperature (25-36°C) and sample volume (5-10 ml). The Weibull model modified by Albert and Mafart was verified to be an interesting model capable to take into account CO2 inactivation kinetic, with a first phase with a shoulder, a second phase with a log-linear shape, and a final phase with a tailing with either a non-zero or a zero asymptote. Clearly, the results obtained shows that an increase in temperature decreases the time needed for the same inactivation efficiency; the residual yeast concentration of N(RES), a thermodynamic parameter, results volume independent, and temperature dependent; the treatment time required to reach 90% of inactivation results temperature dependent, with a sample volume of 5 ml; at 100 bar - 25°C-10 mL a shoulder effect is evident in the inactivation kinetic. The model can be considered a new useful tool to predict new CO2 pasteurization data at different operative conditions.  相似文献   

7.
The combined pressure-thermal inactivation kinetics of spores from three strains of anaerobic (Clostridium sporogenes, C. tyrobutylicum, and Thermoanaerobacterium thermosaccharolyticum), and six strains of aerobic (Bacillus amyloliquefaciens and B. sphaericus) bacteria were studied. Spores of these bacteria were prepared in deionized water and treated in a custom-made kinetic tester over various pressure (0.1 and 700 MPa) and thermal (105 and 121 degrees C) combinations. Survivor data were modeled using log-linear and Weibull models to obtain relevant kinetic parameters. In comparison to thermal treatment alone, the combined pressure-thermal conditions accelerated the inactivation of the spores tested. A measurable fraction of spore populations was inactivated during the pressure come-up time. Pressure-assisted thermal processing (PATP) at 700 MPa and 121 degrees C for 1 min inactivated up to 7-8 log for some of spores tested. Among bacteria evaluated, based on survivor curve data T. thermosaccharolyticum, B. amyloliquefaciens Fad 82, and Fad 11/2 were found to produce the most PATP-resistant spores. PATP inactivation plots showed characteristic upward curvature, which is indicative of the tailing behavior. Since both log-linear and Weibull kinetic models did not consider microbial reduction during process come-up time, our results demonstrated that the estimated model parameters were not adequate to compare combined pressure-thermal resistance of various bacterial spores tested.  相似文献   

8.
Interest in high hydrostatic pressure processing as a nonthermal pasteurization process for foods continues to increase. Feline calicivirus (FCV), a propagable virus that is genetically related to the nonpropagable human noroviruses, was used for detailed evaluation of the high pressure processing parameters necessary for virus inactivation. Pressure inactivation curves of FCV strain KCD in Dulbecco's modified Eagle medium with 10% fetal bovine serum were obtained at 200 and 250 MPa as a function of time at room temperature. Pressure inactivation curves at 200 and 250 MPa also were determined as a function of temperature ranging from --10 to 50 degrees C at treatment times of 4 and 2 min, respectively. Tailing was observed for inactivation as a function of treatment time, indicating that the linear model was not adequate for describing these curves. The two nonlinear models, the log logistic and Weibull functions, consistently produced better fit to inactivation curves than did the linear model. The mean square errors were 0.381 for the log logistic model, 0.425 for the Weibull model, and 1.546 for the linear model. For inactivation as a function of temperature, FCV was most resistant to pressure at 20 degrees C. Temperatures above and below 20 degrees C significantly increased pressure inactivation of FCV. A 4-min treatment of 200 MPa at --10 and 50 degrees C reduced the titer of FCV by 5.0 and 4.0 log units, respectively; whereas at 20 degrees C the same treatment only reduced the titer by 0.3 log units. These novel results point to the potential for using temperatures above and particularly below room temperature to lower the pressure needed to cause the desired level of virus inactivation.  相似文献   

9.
A recently published study of the inactivation of Clostridium botulinum spores at various temperatures in the range of 101 to 121 degrees C and neutral pH revealed that their semilogarithmic survival curves all had considerable upward concavity. This finding indicated that heat inactivation of the spores under these conditions did not follow a first-order kinetics and that meaningful D values could not be calculated. The individual survival curves could be described by the cumulative form of the Weibull distribution, i.e., by log S = -b(T)t(n(T)), where S is the survival ratio and b(T) and n(T) are temperature-dependent coefficients. The fact that at all temperatures in the above range n(T) was smaller than 1 suggested that as time increases sensitive members of the population parish and survivors with increasing resistance remain. If damage accumulation is not a main factor, and the inactivation is path independent, then survival curves under monotonously increasing temperature can be constructed using a relatively simple model, which can be used to calculate the spores' survival in a limiting case. This is demonstrated with computer-simulated heating curves and the experimental constants of the C. botulinum spores, setting the number of decades reduction to 8, 10, and 12 (the current criterion for commercial sterility).  相似文献   

10.
研究300~600 MPa超高压条件下处理四川泡萝卜5~25 min,对其细菌总数的影响、对霉菌、酵母菌及大肠菌群的杀灭效果的影响。并采用3 种模型对不同压力条件下杀菌动力学过程进行分析比较。结果表明:随处理压力和时间的增加,超高压对泡萝卜的杀菌效果增强;霉菌和酵母菌对压力较为敏感,500 MPa处理5 min可被全部杀死;Weibull模型能很好地拟合泡萝卜超高压杀菌的动力学过程(决定系数R2>0.99),且相较Log-logistic模型更简洁、灵活实用。尺度参数b随处理压力的增加而增大,形状参数n则随压力的增加而减小。  相似文献   

11.
Traditionally, ozone processing within the food industry has focused on solid foods by either gaseous treatment or washing with ozonized water. However, with the FDA's approval of ozone as a direct additive to food, the potential for liquid applications has emerged. This study investigates the effect of ozone processing on microbial inactivation (E. coli ATCC 25922 and NCTC 12900) and quality parameters (color, phenolic content) of cloudy apple juice. Apple juice samples were ozonated at room temperature (20 ± 1.5 °C) with a generated ozone concentration of 0.048 mg O(3) at a constant flow rate of 0.12 L/min and treatment time of 0 to 10 min. E. coli inactivation kinetics in apple juice were described quantitatively by using the Shoulder log-linear and the Weibull model. Ozone treatment of E. coli in apple juice demonstrate that a desired 5 log reduction can be achieved within 5 min. Apple juice color (L*, a*, and b*) and total phenols were significantly affected by ozone concentration and treatment time.  相似文献   

12.
洪晨  潘忠礼  王蓓  马海乐  周存山 《食品工业科技》2018,39(18):105-109,116
为研究脉冲强光对大肠杆菌的杀菌效应,试验以大肠杆菌ATCC 8739为对象,研究了不同生长期、pH和温度对脉冲强光杀菌效果的影响,并对其杀菌动力学进行Linear和Weibull模型拟合。结果表明:培养了6 h的对数期大肠杆菌对脉冲强光处理最为敏感,处理1 s能够降低(2.31±0.16)lg cfu/mL。pH和温度对脉冲强光杀菌效果有很大影响,介质温度在35~45 ℃,pH4.0~6.0或pH8.0都能促进脉冲强光的灭活作用。不同脉冲距离和时间下,Linear和Weibull模型都能够很好地拟合脉冲强光对大肠杆菌的杀菌效果(R2>0.99),且Weibull模型更为精确,但杀菌效果最终取决于辐射通量(可通过调节脉冲距离和脉冲时间改变)。总之,脉冲强光技术可以作为一种有效杀灭大肠杆菌的非热杀菌技术,其杀菌过程符合Linear和Weibull模型,且Weibull更为精确,该模型可以为饮用水消毒提供参考。  相似文献   

13.
超高压对双孢蘑菇的杀菌效果和动力学的研究   总被引:1,自引:0,他引:1  
以细菌总数、大肠菌群、酵母菌和霉菌数为对象,研究了超高压(High hydrostatic pressure,HHP)处理对双孢蘑菇(Agaricus bisporus)的杀菌效果和杀菌动力学。双孢蘑菇在300、400、500、600MPa压力下,室温下分别用HHP处理2.5~25min。结果表明:随压力的升高和时间的延长,杀菌效果增强;霉菌、酵母对压力较为敏感,400MPa处理2.5min可将其全部杀死;300MPa处理2.5min可完全杀灭双孢蘑菇中的大肠菌群。应用Weibull模型对不同处理条件下双孢蘑菇的杀菌效果进行拟合,拟合动力学曲线的决定系数R2均大于0.97,拟合效果较好。提出了双孢蘑菇的HHP杀菌的最优杀菌工艺参数,即600MPa处理5min,该条件即可以有效杀灭双孢蘑菇中的微生物。  相似文献   

14.
Inactivation curves of phage lambda cI 857 inactivated by high hydrostatic pressure were obtained at three pressure levels (300, 350, and 400 MPa) in buffered media and ultrahigh-temperature 2% reduced fat milk. Pressurization of phage lambda in buffered media at 300 MPa for 300 min, 350 MPa for 36 min, and 400 MPa for 8 min reduced the titer of phage lambda by 7.5, 6.7, and 7.7 log, respectively. Pressurization of phage lambda in milk at 300 MPa for 400 min, 350 MPa for 80 min, and 400 MPa for 20 min reduced the titer of phage lambda by 5.4, 6.4, and 7.1 log, respectively. Tailing was observed in all inactivation curves, indicating that the linear model was not adequate for describing these curves. Among the three nonlinear models studied, the Weibull and log-logistic models consistently produced best fits to all inactivation curves, and the modified Gompertz model the poorest. Because there were no significant differences in the values of shape factor (n) for suspension medium buffer, we reduced the number of parameters in the Weibull model from two to one by setting n at the mean value. The simplified Weibull model produced a fit comparable to the full model. Additionally, the simplified Weibull model allowed predictions to be made at pressures different from the experimental pressures. Menstruum was found to significantly affect the pressure resistance of phage lambda. Comparison of pressure inactivation of hepatitis A virus and phage lambda indicated that phage lambda is more sensitive to pressure than hepatitis A virus in Dulbecco's modified Eagle medium with 10% fetal bovine sera.  相似文献   

15.
16.
The objective of this research was to evaluate the combined effect of high pressure processing (temperature, pressure and time) and product (pH) related variables on destruction kinetics of spores of Bacillus licheniformis in carrot juice. A 3-level factorial experimental design was used with the microbial spores inoculated into carrot juice at the natural pH (6.2) and acidified pH (4.5 and 5.5), pressure (400, 500 or 600 MPa), temperature (40, 50, and 60 °C) and time (0–40 min) conditions. D values found varied from 0.6 to 14.1 min based on the temperature, pressure and pH level combinations. The corresponding temperature and pressure dependency of D values were in the range 23.3 to 31 °C and 241 to 465 MPa, respectively. The destruction pattern was also dependent on pH, with lower pH contributing to higher destruction rate. Conventional log-linear model and Weibull model were used to describe the survivor curves and for predicting processing time to achieve a 5D spore reduction. The survivor curves exhibited slightly upward concavity and therefore better described by a Weibull than the log-linear model. Treatment combinations showed significant (p  0.05) effects on D and z values of log-linear model and rate parameter (α) of Weibull model. The 5D spore count reduction times estimated using Weibull model parameters were longer than those from the log-linear model, generally demonstrating an over-treatment. Overall, the pH reduction of low acid foods showed a significant enhancement of rate of destruction of B. licheniformis spores.  相似文献   

17.
There is no suitable model for predicting thermal inactivation kinetics of Salmonella spp. for many types of liquid egg products, including salted liquid egg yolk, for use in updating U.S. Department of Agriculture (USDA) pasteurization guidelines. This is because, in part, of the variations in Salmonella strains and the changes in the processing of liquid egg products over the past 40 years. The objectives of the present study were to determine the thermal inactivation kinetics and to create a general thermal inactivation kinetics model that can be used for estimating log reductions of salmonellae in 10% salted liquid egg yolk for temperatures between 62.2 and 69°C. This model can be used by processors to help ensure adequate pasteurization. This was accomplished by studying the inactivation kinetics of a three-strain composite of heat-resistant Salmonella serovars Enteritidis and Oranienburg, inoculated into commercially processed 10% salted liquid egg yolk. The survival curves were convex, with asymptotic D-values. From these curves, a general model was developed to predict log reductions for given times at specified temperatures. For example, at a temperature of 67.3°C (153.1°F) for 3.5 min, our model predicts a 5-log reduction would be obtained, whereas with the current USDA minimum required pasteurization regimen (63.33°C [146°F] for 3.5 min), our model predicts that a reduction of only 2.7 log would be obtained. The results of this study provide information that can be used by processors to aid in producing safe, pasteurized egg yolk products, and for satisfying USDA pasteurization performance standards and developing industry guidance.  相似文献   

18.
The aim of this study was to develop an equation that accurately predicts microbial heat inactivation under nonisothermal treatments at constantly rising heating rates (from 0.5 to 5 degrees C/min) in media with different pH values (4.0 or 7.4). The survival curves of all bacteria (Enterococcus faecium, Escherichia coli, Listeria monocytogenes, Salmonella Senftenberg 775W, Salmonella Typhimurium, and Staphylococcus aureus) tested under isothermal treatments were nearly linear. For the most heat-resistant microorganism (E. faecium), the estimated DT-values at pH 7.4 were at least 100 times those of the second most thermotolerant microorganism (Salmonella Senftenberg 775W). The heat resistance of E. faecium was up to 30 times lower at pH 4.0 than at pH 7.4. However, E. faecium was still the most heat-resistant microorganism under nonisothermal treatments at both pH values. Inactivation under nonisothermal conditions was not accurately estimated from heat resistance parameters of isothermal treatments when microbial adaptation or sensibilization occurred during the heating up lag phases. The under-prediction of the number of survivors might be greater than 15 log CFU within the nonisothermal treatment conditions investigated. Therefore, the nonisothermal survival curves of the most heat-resistant microorganisms were fitted with the following equation: log S(t) = -(t/delta)P. This equation accurately described the survival curves of all the bacteria tested. We observed a linear relationship between the log of the scale parameter (delta) and the log of the heating rate. A p value characteristic of each microorganism and pH tested was calculated. Two equations capable of predicting the inactivation rate of all bacteria tested under nonisothermal treatments at pH 7.4, 5.5, or 4.0 were developed. The model was evaluated in skim milk and apple juice. The results of this study could be used to help minimize public health risks and to extend the shelf life of those foods requiring long heating up lag phases during processing.  相似文献   

19.
This study was aimed at predicting the inactivation of Listeria monocytogenes in cooked beef during unsteady heating. A one-step approach was firstly applied to determine the thermodynamic coefficient of the beef sample. Then, inactivation kinetics was estimated by constructing the empirical heat transfer model and the log-linear dynamic inactivation model. Validations showed that the integrated model could accurately describe L monocytogenes dynamic inactivation under unsteady heating conditions. With the bootstrap and Monte Carlo approach, the stochastic inactivation of L. monocytogenes could be further simulated by considering the model uncertainty and strain variability. A higher uncertainty of the time for 4 log CFU g-1 reduction presented when the endpoint temperature was relatively lower. The present study might provide a practical way to predict the bacterial dynamic and stochastic inactivation for further probabilistic risk assessment.  相似文献   

20.
Shigella is recognized as a major foodborne pathogen; however, relatively few studies have been reported on its growth and survival characteristics, particularly under conditions relevant to food. A fractional factorial design was used to measure the effects and interactions of temperature (4-37 degrees C), pH (2-6) and NaCl (0.5-9%) on survival kinetics of Shigella flexneri strain 5348 in BHI broth. Stationary-phase cells were inoculated into sterile media to give initial populations of 6-7 log(10) CFU/ml and bacterial populations were determined periodically by aerobic plate counts. A total of 267 cultures, representing 83 variable combinations of temperature, pH and NaCl concentration, were analyzed. Survivor curves were fitted from plate count data by means of a two-phase linear model to determine lag times and slopes of the curves, from which decimal reduction times (D-values) and times to a 4-log10 inactivation (t 4D) were calculated. Second order response surface models in terms of temperature, initial pH and NaCl concentration were obtained for the inactivation kinetics parameters of S. flexneri using regression analysis. The use of log10 transformation of the inactivation kinetics parameters yielded models with R2 values of >0.8. These models can provide an estimate of Shigella inactivation. The data obtained suggest that Shigella is resistant to acid and salt and that low pH foods stored at low temperatures may serve as vehicles for gastrointestinal illness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号