首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lead, copper, and cadmium were adsorbed onto calcium alginate beads containing the cell suspension discarded from a brewery. In the cell suspension, there were many cells under lysis. The cell-suspension immobilized beads were prepared by adding 0.6% (w/v) sodium alginate into the cell suspension from the brewery and then making the cell suspension fall dropwise into the swirling 1% (w/v) calcium alginate solution. The dry weight of insoluble solid in the cell suspension was 96 g dry weight/l and the dry density of the bead containing cell suspension was 140 g dry weight/l of the bead. The specific metal uptake of the cell-suspension immobilized bead was 23.7 mg Pb2+, 14.3 mg Cu2+, and 13.4 mg Cd2+/g bead dry weight, respectively. The cell-suspension immobilized beads retained the initial metal-uptake capacity after 20 repeated batches of adsorption and desorption, but the fraction of metal desorbed from the beads by 1 M HCl solution was only 70% of the adsorbed metal. The beads, which had been contained for 14 successive days in the 0.5% (w/v) CaCl2 solution at 4 °C just after 20 cycles of adsorption/desorption, retained the initial metal-uptake capacity after 30 repeated cycles, and more than 90% of the copper and cadmium adsorbed on the beads was desorbed by the 1 M HCl solution.  相似文献   

2.
BACKGROUND: Microbial bioethanol production is an important option in view of the finite global oil reserves. Bioethanol fermentation was carried out using immobilized microorganisms (Saccharomyces cerevisiae, Zymomonas mobilis, Pichia stipitis, etc.), which has many advantages compared with the use of free cells. Various support materials have been used for bioethanol fermentation, and alginate gels have been one of the most widely used matrices for cell entrapment. The aim of this study was increased bioethanol production by Saccharomyces cerevisiae immobilized on alginate gels. First, N‐vinyl‐2‐pyrrolidone was grafted onto sodium alginate. Then, the properties of ethanol production were investigated using the matrix obtained. RESULTS: The performance of ethanol fermentation was affected by calcium chloride concentration, N‐vinyl‐2‐pyrrolidone grafted onto the sodium alginate, sugar concentration and the percentage of immobilized cell beads. These effects were optimized to give maximum ethanol production. Ethanol production was accelerated when sodium alginate polymer was modified with N‐vinyl‐2‐pyrrolidone. The maximum concentration, productivity and yield of ethanol were 69.68 g L?1, 8.71 g L?1 h?1 and 0.697 g g?1, respectively. CONCLUSION: The new polymeric matrix, when compared with sodium alginate, showed better ethanol production due to the hydrophilic property of N‐vinyl‐2‐pyrrolidone. The results suggest that the proposed method for immobilization of Saccharomyces cerevisiae has potential in industrial applications of the ethanol production process. Copyright © 2011 Society of Chemical Industry  相似文献   

3.
The alginate in bead forms was used to immobilize Burkholderia cepacia lipase. The microencapsulation technique for lipase entrapment was a 2% (w/v) of sodium alginate concentration prepared by ionic gelation using calcium chloride as the cross-linking agent in a gelling solution. The beads were tested in different solvents as acetone, chloroform, toluene, n-hexane, and n-heptane. Over a 5-day period (120?h), the n-heptane maintained the reasonable (excellent) residual activity of the immobilized lipase. Morphological studies on reused beads and new beads were performed. All beads for isoamyl acetate yield were tested. The reused bead leaches substantially, with a maximum ester yield of 92%. With modifications in the molar ratios, the synthesis of banana flavor (isoamyl acetate) was performed in both the alcohol per acid and acid per alcohol excesses.  相似文献   

4.
In this study, anti-leukemic enzyme L-asparaginase (E.C.3.5.1.1) from Escherichia coli ATCC 11303 was modified by the microencapsulation technique onto calcium alginate beads. Using response surface methodology (RSM), a three-level full factorial design, the values of concentration of sodium alginate, concentration of calcium chloride, and enzyme loading were investigated to obtain the highest residual L-asparaginase (L-ASNase) activity % (immobilized enzyme activity/free enzyme activity). The effects of the studied factors on immobilization were evaluated The predicted values by the model were close to the experimental values, indicating suitability of the model. The results presented that an increase in sodium alginate concentration increased the percent of residual activity of L-ASNase at any given calcium chloride concentration and the moderate amount of enzyme loading increased the percent residual activity. The optimal immobilization conditions were as follows: sodium alginate 1.98% (w/v), calcium chloride concentration 3.70% (w/v), and enzyme load 46.91% (v/v). The highest residual L-ASNase activity % obtained was 34.49%.  相似文献   

5.
Yeast cells were immobilized on calcium alginate beads prepared using different calcium concentrations. The compression properties of the immobilized beads (e.g., softness index and retardation time for compression) were strongly affected by the calcium concentration. The effects of the bead properties on filtration characteristics, such as cake porosity, specific cake filtration resistance, cake compression creeping effect and cake compressibility, were analysed using a dead-end filtration system. The filtration curve of yeast-immobilized beads had an “S” shape, similar to that of soft gel particles. The cake compression behaviour and variation in cake properties were directly reflected on the curve trend. The Voigt in the series model was employed to describe variation in cake porosity with time during a compression. The yeast immobilization increased the bead softness; therefore, the porosity of a cake formed by yeast-immobilized beads was lower than that formed by pure calcium alginate beads. The cakes formed by yeast-immobilized beads possessed a high compressibility of approximately 1.0 and a high softness index of approximately 1.5. The beads prepared using lower calcium concentrations had higher softness, shorter retardation times for compression, higher cake compressibility, lower cake porosity and higher specific cake filtration resistance. The results demonstrated that immobilizing yeast cells on calcium alginate beads is beneficial for retaining higher yeast activity than that of freely suspended yeast. However, the activity levels of yeast immobilized using different calcium concentrations were nearly the same after 3 h. Therefore, using high concentrations of calcium for yeast immobilization is beneficial for improving yeast activity and filtration characteristics.  相似文献   

6.
Comparison of the production of L ‐phenylacetylcarbinol (L ‐PAC) from benzaldehyde by cells of Torulaspora delbrueckii immobilized in calcium alginate and barium alginate showed that cells immobilized in calcium alginate beads were usable for up to six cycles compared with nine cycles for barium alginate‐immobilized cells. Barium alginate‐immobilized cells yielded a total of 2.17 g of L ‐PAC in nine cycles whereas in the case of calcium alginate‐immobilized cells, a total of 1.17 g of L ‐PAC was formed when 400 mg benzaldehyde and 400 mm3 of acetaldehyde were used in each cycle as substrate and co‐substrate respectively. Copyright © 2003 Society of Chemical Industry  相似文献   

7.
The production of lactic acid from whey by Lactobacillus casei NRRL B‐441 immobilized in chitosan‐stabilized Ca‐alginate beads was investigated. Higher lactic acid production and lower cell leakage were observed with alginate–chitosan beads compared with Ca‐alginate beads. The highest lactic acid concentration (131.2 g dm?3) was obtained with cells entrapped in 1.3–1.7 mm alginate–chitosan beads prepared from 2% (w/v) Na‐alginate. The gel beads produced lactic acid for five consecutive batch fermentations without marked activity loss and deformation. Response surface methodology was used to investigate the effects of three fermentation parameters (initial sugar, yeast extract and calcium carbonate concentrations) on the concentration of lactic acid. Results of the statistical analysis showed that the fit of the model was good in all cases. Initial sugar, yeast extract and calcium carbonate concentrations had a strong linear effect on lactic acid production. The maximum lactic acid concentration of 136.3 g dm?3 was obtained at the optimum concentrations of process variables (initial sugar 147.35 g dm?3, yeast extract 28.81 g dm?3, CaCO3 97.55 g dm?3). These values were obtained by fitting of the experimental data to the model equation. The response surface methodology was found to be useful in optimizing and determining the interactions among process variables in lactic acid production using alginate–chitosan‐immobilized cells. Copyright © 2005 Society of Chemical Industry  相似文献   

8.
BACKGROUND: Continuous ethanol fermentation of concentrated food waste hydrolysates has been studied. The process was carried out in an immobilized cell reactor with beads of calcium‐alginate containing immobilized Saccharomyces cerevisiae H058 at temperature 30 °C and pH 5.0. RESULTS: The total residual sugar decreased with increase of hydraulic retention time (HRT) under various reducing sugar concentrations. Ethanol production by immobilized cells increased with increase in HRT, regardless of the substrate concentrations employed. The highest ethanol concentration of 89.28 g L?1 was achieved at an HRT of 5.87 h and reducing sugar concentration of 200 g L?1. At an HRT of 1.47 h, the maximum volumetric ethanol productivity of 49.88 g L?1 h?1 and the highest ethanol yield of 0.48 g g?1 were achieved at reducing sugar concentration of 160 and 200 g L?1, respectively. The difference between the fresh and the 30‐day Ca–alginate immobilized cell was also shown by scanning electronic micrographs of beads taken from their outer and inner surfaces. CONCLUSIONS: Continuous ethanol production from concentrated food waste hydrolysates using immobilized yeast cells is promising in view of the high ethanol productivity obtained at relatively high conversion and excellent reactor stability. Copyright © 2011 Society of Chemical Industry  相似文献   

9.
A simple and novel method using gel shrinkage to indirectly characterize the structure of calcium alginate gel (CAG) beads during the calcium alginate gelation process was presented in this study. The effect of preparation process parameters (gelling cations, bead diameter, and alginate M w and concentration) on the structure of the CAG bead formation process was thoroughly investigated. It was found that (a) the concentration of the Na+ and Ca2+ ion in gel bath was found to be the determining factor in the gel structure formation process by regulating the dissociation of alginate and the complexation of the calcium; (b) Na+ acts as a competitor with calcium and a screen in the electrostatic repulsion; (c) the effect of beads size below 700 μm on the structure of CAG beads can be neglected; and (d) the sodium alginate concentration has no significant effect on the gel formation process. Furthermore, the diffusion of bovine serum albumin (BSA) was controlled by the density of CAG bead. Consequently, a faster diffusion rate of BSA within the looser structure of beads can be observed. These results are keys to understanding the behavior and performance of beads in their utilization medium. © 2020 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48923.  相似文献   

10.
BACKGROUND: A process combining biocatalytic reaction and cell activity regeneration was designed for the asymmetric reduction of 3‐oxo ester. By immobilizing resting baker's yeast (Saccharomyces cerevisiae) in calcium alginate beads, the high yield and long catalyst life were achieved in the aqueous phase in this process with methyl acetoacetate (MAA) as the model substrate. RESULTS: Two combined fixed‐bed reactors were able to work steadily for at least 16 days. The activity of immobilized baker's yeast could be retained by re‐culture with culture medium regularly. The re‐culture time for bead reactivation was optimized to be 30 h. High yield (about 80%) and high enantiomeric excess (>95%) were maintained after 12 batches of asymmetric reduction. The immobilized beads retained their original shapes even after a long reaction time in the fixed‐bed reactor, while the beads broke after reaction of five batches in a flask. CONCLUSION: The combined process of biocatalysis and cell activity regeneration was successfully achieved in the asymmetric reduction and decreased the breakage of beads as well as increased the efficiency of catalyst. Copyright © 2008 Society of Chemical Industry  相似文献   

11.
The physiology of Streptomyces clavuligerus has been studied by investigating oxygen uptake and β-lactam (clavulanic acid) production by free and alginate entrapped cells. The specific oxygen uptake rate of cells entrapped in strontium or calcium alginate was only about 35% of the rate in free cells. This reduction in oxygen uptake was due to reduced internal diffusion of oxygen; in addition calcium, barium and strontium ions could also cause oxygen uptake in free cells to be inhibited. Measurements of the deformation of individual gel beads showed that maximum hardness was reached after 15 min exposure to 0.14 mol dm?3 Ca2+. Exposure of cells to Ca2+ for this time caused a 15% reduction in the rate of oxygen uptake. Levels of clavulanic acid produced by free cells were higher than those produced by immobilized cells; production was dependent on the degree of aeration of the cells.  相似文献   

12.
BACKGROUND: A malto‐oligosaccharide forming α‐amylase from Bacillus subtilis KCC103 immobilized in calcium alginate beads was repeatedly used in batch processes of starch hydrolysis. The degree of starch degradation and operational stability of the immobilized system were optimized by varying the physical characteristics and composition of the beads. The products formed from hydrolysis of various starches by α‐amylase immobilized in different supports were analyzed. RESULTS: Immobilized beads prepared from 3% (w/v) alginate and 4% (w/v) CaCl2 were suitable for up to 10 repeated uses, losing only 25% of their efficiency. On addition of 1% silica gel to alginate prior to gelation, the operational stability of the immobilized enzyme was enhanced to 20 cycles of operation, retaining > 90% of the initial efficiency. Distribution of malto‐oligosaccharides in the starch hydrolyzate depended on the type of starch, reaction time and mode of immobilization. Soluble starch and potato starch formed a wide range of malto‐oligosaccharides (G1–G5). Starches from wheat, rice and corn formed a narrow range of smaller oligosaccharides (G1–G3) as the major products. CONCLUSION: The immobilized beads of α‐amylase from KCC103 prepared from alginate plus silica gel showed high efficiency and operational stability for hydrolysis of starch. This immobilized system is useful for production of malto‐oligosaccharides applied in the food and pharmaceutical industries. Since this KCC103 amylase can be produced at low cost utilizing agro‐residues in a short time and immobilized enzyme can be recycled, the overall cost of malto‐oligosaccharide production would be economical for industrial application. Copyright © 2008 Society of Chemical Industry  相似文献   

13.
BACKGROUND: Bioethanol produced from renewable biomass, such as corn meal, is a biofuel that is both renewable and environmentally friendly. Significant scientific and technological investments will be needed to achieve substitution of conventional fossil fuels with alternative fuels. The ethanol fermentation of enzymatically obtained corn meal hydrolyzates by free and immobilized cells of Saccharomyces cerevisiae var. ellipsoideus yeast in a batch system was studied. The initial glucose and inoculum concentration and the time required for the efficient ethanol production were optimized taking into account parameters such as ethanol concentration, ethanol yield, percentage of the theoretical yield of ethanol and volumetric productivity in both immobilized and free cell systems. RESULTS: The yeast cells were immobilized in Ca–alginate by an electrostatic droplet generation method. An optimal initial inoculum concentration of 2% (v/v) and optimal fermentation time of 38 h for both immobilized and free yeasts were determined. An optimal initial glucose concentration of 150 g L?1 for free system was achieved. At the initial glucose concentration of 176 g L no substrate or product inhibition were achieved with immobilized yeast. CONCLUSION: By immobilization of the yeast into Ca–alginate using the method of electrostatic droplet generation a superior system was realized, which exhibited lower substrate inhibition and higher tolerance to ethanol. The cells of S. cerevisiae var. ellipsoideus yeast entrapped in Ca–alginate showed good physical and chemical stability, and no substrate and product diffusion restrictions were noticed. Copyright © 2008 Society of Chemical Industry  相似文献   

14.
In the present study, benzaldehyde was converted by both the free cellsSaccharomyces cerevisiae (ATCC 834) and those immobilized in the calcium alginate liquid-core capsule intoL-PAC during anaerobic fermentation in a medium containing benzaldehyde. In a free cells survey, skipping aerobic adaptation before anaerobic fermentation caused all of benzaldehyde to be converted by 220 g (wet weight) of cells in 100 mL of the medium even at a higher concentration of 8 g/L benzaldehyde. The yield of L-PAC based on the moles of converted benzaldehyde increased as the amount of benzaldehyde dose was increased. The encapsulation protected cells effectively from the toxicity of benzaldehyde. Even a small quantity, 1.1 g (dry weight), of encapsulated cells in 100 mL of the medium containing 0.6% benzaldehyde converted more than 95% of the benzaldehyde, and the corresponding yield of L-PAC was about 40%. The production of L-PAC by the encapsulated cells depended on the pH of the medium. The conversion of benzaldehyde decreased slightly, but yield of L-PAC increased as the pH of the broth solution was fixed at a lower value. Biotransformation in a small side reactor of the batch system caused higher yield of L-PAC than that in the batch reactor containing the same quantity of encapsulated cells during the first 4 hours of fermentation.  相似文献   

15.
The aim of this study is to explore naturally occurring sorbents that have high affinity for heavy metal treatment. In this respect, series of polymer‐clay composite beads that consists of Na‐alginate and montmorillonite clay were prepared using CaCl2 as crosslinker. The prepared composite bead was characterized by scanning electron microscope (SEM). Removal of lead from aqueous solution using this bead was then studied in batch adsorption experiments. The amount of lead removed was found to increase as the percent of Na‐alginate increase in the composite beads. The experimental results also showed that the equilibrium contact time was obtained within ∼ 100 min with (t1/2) of 50% adsorption in less than 10 min. Lead adsorption was found to be strongly pH‐dependent and display a maximum uptake capacity (244.6 mg/g) at pH 6 and minimum uptake (76.6 mg/g) at pH 1. Maximum lead adsorption was found to increase with increasing initial lead concentration in the feed solution and with decreasing temperature of experiment. Based on alginate‐montmorillonite beads packed columns, a highly efficient method for Pb(II) removal from aqueous solution was developed. The effect of flow rate on adsorption of 100 mg/L Pb(II) in the packed‐bed column was investigated by changing the flow rate between 0.5 and 2.5 mL min−1. The recovery of 100 mg/L Pb(II) in the packed‐bed column was found to be 100% at flow rates 0.5 and 1 mL min−1 then lowered to be 93% and 84% at flow rates 1.5 and 2.5 mL min−1, respectively. The effect of Pb(II) flow concentration ranging from 10 to 1000 mg/L on the adsorption of lead ions at constant flow rate 1.0 mL min−1 was also studied using column procedure. Technical feasibility for the uses of the prepared composite beads for the treatment of actual polluted wastewater samples collected from some industrial cities in Egypt was investigated. The evaluation of the system was performed by a complete analysis of heavy metals in the wastewater samples before and after the treatment process. The results showed a promising possibility for producing wastewater of better quality using such prepared beads. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

16.
Saccharomyces cerevisiae ATCC 39859 was immobilized onto small cubes of wood in order to produce very enriched fructose syrup from synthetic glucose-fructose mixtures, through the selective fermentation of glucose. The kinetics of growth and ethanol production rates were studied. Several tests to assess the influence of substrate and product concentration on the production rates were carried out and appropriate rate equations were proposed as a design basis for continuous immobilized reactors. The ethanol production rate and cell growth rate were found to be inhibited linearly by both substrate and product concentrations. A maximum ethanol productivity of 21.9 g 1−1 h−1 was attained from a feed containing 10% (by weight) glucose and 10% (by weight) fructose. The ethanol concentration was 29.6 g 1−1, the glucose conversion was 78% and a fructose yield of 99% was obtained. This resulted in a final fructose:glucose ratio of 2.7. At lower ethanol productivity levels the fructose:glucose ratio increased, as did the ethanol concentration in the effluent. The ethanol productivities obtained in this study were 33%–132% higher than those obtained in a previous study using the same system, under similar conditions, with the cells immobilized in alginate beads.  相似文献   

17.
The effect of immobilisation of an industrial strain of Bacillus amyloliquefaciens in calcium alginate beads on production of α-amylase was investigated using lactose-based media in shake flasks and in a 0.3 dm3 glass fermenter. Although the microorganism was a good α-amylase producer in batch cultures of free cells, it was unable to produce the enzyme for extended periods either in repeated batch cultures, or in continuous cultivation. In each case, parallel tests with cells immobilised in calcium alginate beads gave still further reduced enzyme yields, and the free cells released into the broth from these beads probably contributed substantially to any amylase produced during these extended fermentations. After prolonged use, the core of the alginate beads accumulated hard insoluble material, with viable immobilised cells confined to a surface layer.  相似文献   

18.
Silver nanoparticles (AgNPs)‐loaded calcium alginate beads embedded in gelatin scaffolds were developed to sustain and maintain the release of silver (Ag+) ions over an extended time period. The UV irradiation technique was used to reduce Ag+ ions in alginate solution to AgNPs. The average sizes of AgNPs ranged between ca 20 and ca 22 nm. The AgNPs‐loaded calcium alginate beads were prepared by electrospraying of a sodium alginate solution containing AgNPs into calcium chloride (CaCl2) solution. The AgNPs‐loaded calcium alginate beads were then embedded into gelatin scaffolds. The release characteristics of Ag+ ions from both the AgNPs‐loaded calcium alginate beads and the AgNPs‐loaded calcium alginate beads embedded in gelatin scaffolds were determined in either deionized water or phosphate buffer solution at 37 °C for 7 days. Moreover, the AgNPs‐loaded calcium alginate beads embedded in gelatin scaffolds were tested for their antibacterial activity and cytotoxicity. © 2014 Society of Chemical Industry  相似文献   

19.
The availability of alginate gels enclosing Cyanex 302 [bis(2,4,4‐trimethylpentyl)thiophosphinic acid] for the uptake of cadmium and copper from highly concentrated solutions of industrial phosphoric acid wet process phosphoric acid (WPA)] was studied. For this purpose, beads of alginate gels enclosing microdrops of kerosene solutions of the industrial extractant Cyanex 302 at different concentrations were prepared. The experimental procedure gives rise to a composite bead in which alginate is the continuous phase and the organic extractant forms the discrete homogeneously distributed phase within the bead. The equilibrium in this three‐phase system (phosphoric acid–extractant solution–alginate gel) was modelled in terms of the corresponding distribution factors, the main chemical reactions and their equilibrium constants. Retention isotherms of both metal ions were obtained experimentally at four concentrations (1.0, 2.5, 5.0 and 7.5 mol L?1) of pure phosphoric acid. High metal removal efficiency, due to liquid–liquid extraction processes, was observed even in the most acidic conditions. High values of the extraction constants were estimated, with the distribution coefficients between aqueous and alginate phase being near unity. Finally, the results obtained with industrial WPA are in close agreement with those predicted by the physicochemical model developed in synthetic media. Copyright © 2006 Society of Chemical Industry  相似文献   

20.
Alginate beads are a promising carrier for biofertilizer delivery, but still possess drawbacks of low mechanical strength and bead shrinkage that result in poor appearance and inadequate cell protection. Blending alginate with starch was proposed as a solution to these problems, and here alginate hydrogels were prepared using a 2% (w/v) alginate dispersion blended with varying contents of gelatinized starch (0–5% w/v). The interaction produced a viscosity synergism that increased the complexity of the matrix network in the alginate/starch blends, producing a more suitable matrix for cell entrapment. Hydrogen bonding between alginate and starch influenced the viscosity of the various solutions in a way that was consistent with the FTIR spectra. The starch content also helped beads retain their spherical shape after drying. The starch supported the entrapment of bacterial cells (plant growth-promoting bacterium Rhodopseudomonas palustris KTSSR54 as biofertilizer) in the matrix, which reduced cell loss. The highest entrapment efficiency of 70.83% was obtained at 4% (w/v) starch, while the entrapment efficiency of control beads was 50.56%. Overall, the appropriate content of starch mixed with alginate is conducive to changes in the morphology of microcapsules and increases in the amount of biological encapsulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号