首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Electrochemical properties and mechanical properties of welded high strength steel were investigated by the slow strain rate test (SSRT) method with an applied constant cathodic potential. There was no correlation between maximum tensile strength, yield strength, stress at failure, and hydrogen embrittlement. However, the elongation, time-to-fracture, and strain-to-failure ratio decreased with shifting potential of the negative direction. Elongation, time-to-fracture, and strain-to-failure ratio for the various welding methods displayed the highest values when the potential was −770 mV regardless of post-weld heat treatment (PWHT) conditions. The elongation, time-to-fracture, and amount of dimples by PWHT were increased. The optimum potential region for cathodic protection without hydrogen embrittlement was observed between −770 and (above) −850 mV (SCE) in the post-weld specimens heat treated at 550°C and the as-welded specimens.  相似文献   

2.
The cathodic protection method is being widely used in marine structural steel. However, a high tensile steel such as RE 36 steel used for marine structural steel is easily susceptible to hydrogen embrittlement due to overprotection as well as the preferential corrosion of the heat affected zone (HAZ). In this paper, corrosion resistance and mechanical properties were investigated from the electrochemical view and mechanical view in as-wedded and post-weld heat treated specimens. Fracture surface was analyzed by SEM. The corrosion resistance in post-weld heat treated at 550°C was superior to that at other post-weld heat treatment (PWHT) temperature. On the other hand, elongation was decreased with a shift to the low potential direction which may cause hydrogen embrittlement. And a quasi-cleavage (Q.C) fracture mode was also observed significantly with a potential increase to the active direction.  相似文献   

3.
在恒定阴极电位下利用慢应变速率拉伸试验研究高强度船体结构钢焊缝的电化学性能和力学性能。结果表明,试样拉伸断裂主要发生在焊缝的熔合区;结构钢的阴极极化程度对抗拉强度和屈服强度的影响不大;随阴极电位负移,船体结构钢在海水中的延伸率、断裂时间和断裂应变率逐渐减小, 并且当施加阴极电位为-0.89 V(vs SCE)时各项性能最佳。同时,随着阴极电位负移,断裂方式逐渐从韧性断裂向脆性断裂发展,氢脆敏感性逐渐增加,在 -0.70 V~-0.89 V(vs SCE)之间氢脆敏系数低于5%,不发生氢脆;当电位负于-0.94 V(vs SCE),氢脆敏感性迅速提高,当极化电位为-0.99 V (vs SCE)时氢脆系数显著增大至20%,断口开始出现解理单元细小准解理断裂特征;在负于-1.04 V(vs SCE)时,氢脆系数已高于25%,进入危险区,且断口开始出现较多解理单元粗大的准解理、解理等氢脆断裂特征;随着电位继续负移至-1.14 V(vs SCE),断口完全出现解理组织、沿晶、穿晶结构或者两者混合的氢脆断裂特征。  相似文献   

4.
Hydrogen-induced degradation of mechanical properties of a duplex stainless steel in 0.1N H2SO4 solution has been studied under in situ cathodic charging conditions. Significant reductions in percentage of elongation, toughness, and time to failure were noticed due to the ingress of hydrogen into the material at various applied cathodic potentials in the range of −200 to −800 mV (SCE). Cleavage fractures were identified mainly in the ferritic phases. Crack growth was observed to be inhibited by the austenite phase. However, depending on the severity of the environment, both the ferrite and austenite phases could be embrittled. At less negative potentials, presence of surface film and low hydrogen fugacity seemed to control hydrogen ingress in the metal. Addition of thiosulfate to the acidic solution further degraded the mechanical properties of the steel at the applied cathodic potential.  相似文献   

5.
采用慢应变速率拉伸实验方法 (SSRT) 结合断口扫描电镜 (SEM) 观察,研究了阴极保护电位对E550钢在海水中氢脆敏感性的影响.结果表明:随着阴极保护电位负移,E550钢在海水中的氢脆敏感性增加,阴极保护电位为-0.95 V (vs SCE) 时,拉伸试样出现脆性解理断裂特征,电位为-1.05 V时,E550钢断口呈明显脆性断裂特征.  相似文献   

6.
阴极保护电位对Q235钢氢脆敏感性和力学性能的影响   总被引:2,自引:0,他引:2  
利用拉伸实验和显微硬度测试等方法研究了不同阴极保护电位对Q235钢在3.5%NaCl溶液中氢脆敏感性的影响,并用SEM对断口形貌进行分析。结果表明,随着阴极保护电位的负移,Q235钢的最大抗拉强度和屈服强度没有呈现规律性变化,但断面收缩率减小,材料发生氢脆的可能性加大。当施加电位为-1100 mV时,断口出现准解理断裂特征形貌。  相似文献   

7.
采用氢渗透实验法、动电位极化法研究TMCP X80管线钢在不同pH值海水中的氢渗透行为,结合扫描电镜 (SEM) 观察研究显微组织及氢渗透行为对氢脆敏感性的影响。结果表明,随着海水pH值的减小,析氢电位发生正移。天然海水和酸性海水中氢扩散系数随着极化电位负移而增加;极化电流密度越大,氢扩散系数和氢浓度越大。在负于析氢电位时,显微形貌显示出明显的蚀坑和氢鼓泡,酸性海水中更严重。随着海水pH值的减小及外加阴极极化电位负移,氢扩散到材料内部的量更大;充氢电流密度增加也促进氢的扩散,X80钢氢脆敏感性增加。  相似文献   

8.
We report on the optimum corrosion protection potential range for stress corrosion cracking and hydrogen embrittlement of 5083-H112 Al alloy specimens using electrochemical methods and slow strain rate testing (SSRT) in seawater. In the results of the cathodic polarization curve, the concentration polarization due to dissolved oxygen reduction reaction correspondeds to a protection potential of OCP≈ −1.55 V. However, a potential of −1.2 V in the SSRT showed little effect of atomic hydrogen evolution. Potentials less than −1.6 V are affected by atomic and molecular hydrogen. We thus concluded that the effect of atomic hydrogen predominates. Overall, the optimum corrosion protection range for SCC and hydrogen embrittlement of 5083-H112 seems to be between −0.9 V and −0.7 V.  相似文献   

9.
The formation and growth of calcareous deposits on 316L stainless steel and copper under cathodic polarization in artificial seawater were investigated by electrochemical tests and analytical techniques such as SEM, EDX and XRD. The deposits mineral compositions were related to the types of metallic materials and were different on each substrate. On 316L stainless steel at potentials less negative than the water reduction potential (−1100 mV/SCE), the deposits were composed of aragonite with low amounts of brucite; at the potentials more negative than the water reduction potentials, only of brucite. Around the water reduction potentials, the deposits were composed of both aragonite and brucite together. However the formation of brucite was noted before activating the water reduction processes. The results were moderately similar to that on mild steel and the type of deposited phases depended on potentials, at which the cathodic protection was carried out. The deposits formed on copper differed from those on 316L stainless steel and the types of deposited phases were independent from water reduction potential on copper (−1150 mV/SCE). Hence, the deposits were composed only of aragonite at all potential ranges. Due to the low current densities observed in chronoamperometric curves during cathodic polarization and in sufficient alkalinity, it seemed that the brucite could not deposit on this metallic substrate. The article is published in the original.  相似文献   

10.
The effects of polarisation (including cathodic and anodic polarisation) on mechanical properties and stress corrosion cracking (SCC) susceptibility (ISCC) of 7050 aluminium alloy have been investigated by means of polarisation and slow strain rate test. The results of cathodic polarisation experiments showed that the ISCC increased with shifting negatively the polarisation potential when the cathodic potential EC≧?1100 mV(SCE), while it decreased with shifting negatively the polarisation potential when the cathodic potential ECISCC increased severely with increasing the polarisation potential. In addition, the extents for the effect of polarisation potential on ISCC were different among the 7050 aluminium alloy under various aging states. Polarisation was of the biggest effect on the ISCC of under aged state, the smallest effect of over aged state and the middle effect of peak aged state. The SCC mechanism of aluminium alloy was a combination of anodic dissolution and hydrogen embrittlement, and the effects of hydrogen on SCC increased with increasing the hydrogen concentration.  相似文献   

11.
阴极极化对907钢氢脆敏感性的影响   总被引:4,自引:0,他引:4  
采用慢应变速率拉伸试验方法结合断口扫描电镜观察,研究了阴极极化对907钢在海水中氢脆敏感性的影响。结果表明随极化电位负移,907钢在海水中氢脆敏感性增加,极化电位为-1.06V(vs.SCE)时,拉伸试样出现脆性解理断裂特征,极化电位为-1.16V时,907钢主要为脆性断裂。  相似文献   

12.
目的研究不同外加电位下,X80管线钢在近中性p H溶液环境中的裂纹扩展行为。方法对X80管线钢紧凑拉伸试样进行近中性p H溶液环境中的循环加载试验,利用拍摄装置记录不同循环次数下的裂纹长度,并利用扫描电镜(SEM)观察裂纹扩展面上的微观形貌。研究不同外加电位下,X80钢在近中性p H溶液环境中的裂纹扩展速率,分析其裂纹扩展规律。结果在开路条件下,循环加载755次时,裂纹扩展4.6 mm后失稳断裂;在外加电位为-775 m V(vs.SCE)的条件下,循环加载671次时,裂纹扩展3.677 mm后失稳断裂;在外加电位为-1125 m V(vs.SCE)的条件下,循环加载625次时,裂纹扩展3.882 mm后失稳断裂。结论在开路电位和弱阴极电位下,裂纹扩展受到阳极溶解机制和氢脆机制的混合控制,以阳极溶解机制为主,裂纹扩展速率均较低;随着外加电位降低,裂纹扩展机制逐渐过渡为主要受氢致开裂作用控制,裂纹扩展速率显著增加。  相似文献   

13.
Maurette M.-T.       《腐蚀工程科学与技术》2013,48(4):273-278
Abstract

Hydrogen embrittlement behaviour of an HSLA–80 steel in the weld simulated, grain coarsened heat affected zone condition, in synthetic sea water under cathodic charging in the applied potential range of -600 to -1400 mV(SCE) has been studied using a slow strain rate technique. Loss of ductility, as reflected in the percentage elongation and percentage reduction in area values, was substantial at and beyond -800 mV(SCE). The material in the weld simulated condition showed more susceptibility than the as received material, which is considered to be a result of increased strength and a bainitic–martensitic microstructure. Fracture showed both microvoid coalescence and quasi-cleavage features and was indicative of hydrogen induced void nucleation. Both hardening and softening effects on hydrogen charging were experienced.  相似文献   

14.
Influence of applied potentials and loading waveform on the fatigue crack growth forsteel A537 in 3.5% NaCl solution,and corresponding straining electrode behaviour havebeen studied.Under the applied potentials over or below -800mV(SCE),the anodicdissolution or the hydrogen embrittlement is predominatant,respectively.For appliedanodic potential,the acceleration effect of continuous loading pattern on the CF crackgrowth mainly appeared at the range of low ΔK values,while for cathodic potential,itappeared at the high ΔK values.The continuous straining causes a decrease of naturalpotential and an increase of anodic dissolution current.  相似文献   

15.
本文根据外加电位对腐蚀疲劳裂纹扩展速率的影响,断口微观形貌特征及声发射活动性分析三种判别方法,研究了A537钢及工业纯铁在3.5%NaCl中性水溶液中腐蚀疲劳裂纹扩展机理。结果表明,扩展机理取决于外加电位值。对A537钢,外加电位在-800mV(SCE)以上时,裂纹扩展以阳极溶解控制为主,以下时以氢脆控制为主。对工业纯铁,对应的转换电位为-1000mV(SCE)。  相似文献   

16.
阴极极化对921A钢海水中氢脆敏感性的影响   总被引:4,自引:0,他引:4  
利用慢应变速率实验和电化学方法研究了921A钢在海水中不同阴极极化电位下氢脆敏感性的变化趋势,并结合三维视频和扫描电镜观察断口形貌。结果表明,随阴极极化电位的负移,921A钢的韧性降低且氢脆系数增加。在极化电位负于 -0.960 V(相对于饱和甘汞电极电位),921A钢的氢脆系数显著增加至约20%,并出现准解理断裂特征形貌。  相似文献   

17.
Abstract

Straining of smooth tensile specimens of two precipitation hardening stainless steels over a wide range of controlled potentials in natural sea water has revealed regimes of low ductility above about — 200 mV(SCE) and below — 600 mV(SCE). The apparent loss inductility in the anodic region was attributable to dissolution and was found to be associated with pitting and crevice corrosion effects that were exacerbated when straining was conducted in acidified sea water. The embrittlement observed at more cathodic potentials, which gave rise to transgranular or intergranular failure depending upon the material and its heat treatment, is believed to be due to hydrogen that is evolved at such potentials. The occurrence of embrittlement by hydrogen in these materials, to produce similar modes of failure, was confirmed by testing smooth specimens ajtercathodic charging and both smooth and precracked specimens in gaseous hydrogen. Cracking of precracked specimens in gaseous hydrogen is complicated by the presence of δ ferrite stringers in the microstructure, which can give rise to delamination perpendicular to the principal plane of fracture if the stresses ahead of the crack are not reduced significantly by hydrogen embrittlement.  相似文献   

18.
Abstract

The hydrogen induced cracking of X70 pipeline steel was investigated in low temperature and low dissolved oxygen seawater (4°C and 3–4 mg L?1 dissolved oxygen) by potentiodynamic polarisation, slow strain rate tests and hydrogen permeation measurements. The results showed that the hydrogen evolution potential of X70 steel in low temperature and low dissolved oxygen seawater decreased compared with the normal shallow seawater. The susceptibility to hydrogen embrittlement increased as the potential shifted in the negative direction. When the polarisation potentials were below ?1050 mV(SCE) in low temperature and low dissolved oxygen seawater, the fracture surfaces exhibited quasi-cleavage fracture.  相似文献   

19.
本文应用恒电位下应力腐蚀开裂(SCC)的断裂力学试验方法、氢渗透、声发射和电子金相技术,研究了34CrNi3Mo钢在30%NaOH水溶液中SCC机理:在开路电应下,只有当温度>50℃时方可出现SCC;在80℃时,当给定电位E于-1150mV(SCE)时,为活性通道溶解(APC)型SCC,而当给定电位负于-1150mV(SCE)时,州为氢脆(HE)型SCC。由此可见,即使是同—钢—环境体系,SCC的机理也是可变的,因此,想把SCC机理归纳成一个统一的模型是不妥当的。  相似文献   

20.
This is an investigation on the stress corrosion cracking (SCC) behavior of X70 pipeline steel in high pH carbonate-bicarbonate solutions with different concentrations of bicarbonate and chloride ions and at cathodic potential of ?1100 mV versus saturated calomel electrode (SCE) using slow strain rate testing. Electrochemical techniques such as potentiodynamic polarization and electrochemical impedance spectroscopy were used to investigate the electrochemical behavior of X70 pipeline steel in solutions with different concentrations. X70 pipeline steel fracture surface morphology in these different solutions was also studied by scanning electron microscopy (SEM). The results suggested that the susceptibility to SCC for X70 pipeline steel decreased in the most dilute carbonate-bicarbonate solution in the absence of the chloride ion. Also, at potential of ?1100 mV versus SCE, all fracture surfaces showed semi-brittle behavior with transgranular cracks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号