首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The surface hydrophobicity of a poly (vinylidene fluoride) membrane was increased through the phase separation of polycarbonate (PC) solution on the membrane surface. A variety of characterization techniques including surface contact angle measurement, scanning electron microscopy, liquid entry pressure measurement, atomic force microscopy, porosity measurement, pore size measurement, and attenuated total reflectance-Fourier transform infrared spectroscopy were performed to investigate the membrane surface modification. According to the results, the formation of PC deposits on the membrane surface provided hierarchical structures consisting of micro and nanoscale roughness which enhanced the surface hydrophobicity. Direct contact membrane distillation (DCMD) experiments, in which an aqueous solution of sodium chloride (3.5 wt%) resembling the seawater was used as feed, were carried out to assess the performance of membranes. This surface modification technique led to the improved pore wetting resistance of the coated membrane in DCMD application. This novel method is believed to have a great potential to apply on a wide variety of membranes for MD application.  相似文献   

2.
A small molecular-weight cut-off (MWCO) of 6000 Da poly(m-phenylene isophthalamide) (PMIA) embedded zinc oxide (ZnO) hybrid ultrafiltration (UF) membrane was synthesized via nonsolvent-induced phase separation (NIPS). Tests of field emission scanning electron microscope (FE-SEM), energy dispersive X-ray spectroscopy (EDX), atomic force microscopy (AFM), thermal gravimetric analyzer (TGA), Fourier transform infrared (FTIR), capillary flow porometer (CPF), mechanical test, and pure water flux (PWF) for characterization of membranes were carried out. The EDX, FTIR, and TGA indicated the presence of ZnO in the polymer matrix. The hybrid membranes showed enhanced pore density, PWF by the presence of the particles. The contact angle and water flux of modified membrane with 0.03 wt % of nano-ZnO were 47.7° and 52.58 L·m−2·h−1 compared to 71.6° and 36.27 L·m−2·h−1 respectively; Compared with the hydrophobic membrane, the PMIA membrane, with hydrophilicity, is supposed to exhibit good antifouling properties. Furthermore, the thermal stability and mechanical properties of the modified membranes were increased. Finally, the hybrid membrane was used in treating papermaking white wastewater and exhibited good separation and high water flux. The great properties of the ultrafiltration PMIA membranes indicate their potential for excellent performance in industrial applications. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47583.  相似文献   

3.
The novel organic–inorganic hybrid membranes were prepared from poly(vinyl alcohol) (PVA) and vinyltriethoxysilane (VTES). They were characterized using Fourier transform infrared (FTIR), X‐ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), thermogravimetric analysis (TGA), and contact angle metering. The as‐prepared membranes are formed at a molecular scale at a low VTES content. Aggregations in the surface of the as‐prepared membranes were clearly evident above 18.43 wt % VTES loading. The introduction of VTES into the PVA matrix resulted in a decrease in the crystalline and an increase in compactness and thermal stability of the as‐prepared membranes. Silica hybridization reduced the swelling of the as‐prepared membranes in water/ethanol/ethyl acetate mixtures, decreased the permeation flux, and remarkably enhanced water permselectivity in pervaporation dehydration of ethanol/ethyl acetate aqueous solution. The hybrid membrane with 24.04 wt % VTES has the highest separation factor of 1079 and permeation flux of 540 g m?2 h?1. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

4.
Experimental results from the gas‐plasma treatment and electron‐beam irradiation of polyamide (PA) and poly(vinylidene fluoride) (PVDF) membranes to improve their wettability and to evaluate protein adsorption at their surface are presented. The wettability of the membrane surface was determined by contact angle measurements; the analysis of the surface composition was performed by X‐ray photoelectron spectroscopy (XPS). We observed that a reduction in the water contact angle was not always indicative of a reduction in the protein adsorption and, furthermore, that a charge at the surface of the modified membrane seemed to be a major factor in the protein adsorption process. Furthermore, the XPS results shed some light on the modification mechanism of PVDF and PA by electron‐beam irradiation. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

5.
Graft copolymer (PVDF‐g‐PNIPAAm) having poly(vinylidene fluoride) (PVDF) backbones and poly(N‐isopropylacrylamide) (PNIPAAm) side chains was synthesized via radical copolymerization and its hollow fiber membrane was fabricated from dry–wet spinning technique with N, N‐dimethylformamide as the solvent and poly(ethylene glycol) (10,000) as the additive. The effects of spinning condition (take‐up speeds) on the structures and performances of resulting fiber membranes were systematically considered. The structures and performances of fiber membranes were characterized by element analysis, X‐ray photoelectron spectroscopy, water contact angle measurement, scanning electron microscope, atom force microscope, and filtration experiments. The results indicate that PNIPAAm side chains tended to enrich on the membrane surface and pore surface and especially tended to aggregate on the inner surface due to the effect of bore fluid. The hollow fiber membrane exhibits an obvious temperature‐sensitive property. The pure water flux increases remarkably around 32°C, while the retention of albumin egg decreases accordingly, when the permeation temperature rises from 20 to 45°C. As the take‐up speed increases, both the inner and outer diameters of fiber membranes decrease. A higher take‐up speed favors higher pure water permeation flux, which allows larger molecules to permeate through the fiber membrane. POLYM. ENG. SCI. 2013. © 2012 Society of Plastics Engineers  相似文献   

6.
Hydrophobic polydimethylsiloxane — polytetrafluoroethylene (PDMS-PTFE) flat-sheet membranes for pervaporation (PV) of chloroform from aqueous solution were successfully fabricated by solution casting method. The structures and the performance of the membranes was characterized by X-ray diffraction (XRD), scanning electron microscope combined with energy dispersive X-ray spectroscopy (SEM-EDXS), Fourier transform infrared spectroscopy (FT-IR), thermal gravimetric analysis (TGA) and the tests of contact angle and mechanical properties. The adding of PTFE particles (<4 μm) in the PDMS matrix enhanced the crystallinity, hydrophobicity, mechanical strength and thermal stability of the membranes. The examinations showed that the PTFE filled PDMS membranes exhibited striking advantages in flux and separation factor as compared with unfilled PDMS membranes. All the filled PDMS membranes with different PTFE content showed excellent PV properties for the separation of chloroform from water. When the content of the PTFE additive in PDMS composite membrane was 30 wt%, membrane performance was the best at feed temperature 50 °C and permeate-side vacuum 0.101MPa. For the 30% PTFE-PDMS membrane, with the increase of the feed temperature from 30 to 60 °C, the total, water and chloroform fluxes as well as the separation factor increased, the apparent activation energy (ΔEa) of total, chloroform and water were 21.08, 66.65 and 11.49 KJ/mol, respectively, with an increase of chloroform concentration in the feed from 50 to 950 ppm, total, water and chloroform fluxes increased but the separation factor decreased.  相似文献   

7.
Seung Woo Lee  Moonhor Ree 《Polymer》2005,46(12):4068-4076
Films of poly(4-vinylpyridine) (P4VP) and poly(2-vinylpyridine) (P2VP) were characterized before and after they were rubbed with a rayon velvet, and their liquid crystal (LC) aligning abilities were investigated. Atomic force microscopy images showed that microgrooves developed along the rubbing direction in the surfaces of the rubbed films of both polymers. Retardation and linearly polarized infrared spectroscopy analyses revealed that in both polymers the vinyl backbones are oriented along the rubbing direction, while the pyridine side groups are oriented perpendicular to the rubbing direction; the para-directions of the pyridine rings in the P4VP film have a tilt angle of about 45° in the plane perpendicular to the rubbing direction but the para-directions of the pyridine rings in the P2VP film align nearly in the film surface. These rubbed films were found to induce uniform, homogeneous LC alignment along the rubbing direction. Both LC alignments were, however, found to have low anchoring energies that are due to the inherently weak interactions of the LCs with the film surfaces. Moreover, LC cells prepared using these films were found to have only limited stability. These results lead to the conclusion that the microgrooves generated along the rubbing direction play a critical role in governing the alignment of LCs that weakly interact with the parallel oriented vinyl main chains in competition with the perpendicularly oriented pyridine side groups, despite their dimensions, which are larger than the LC molecules and thus limit their effectiveness. In addition, the zero degree pre-tilting behavior of the LCs on these films was investigated in detail, taking into account both the rubbing-induced orientations of the polymer segments and their anisotropic interactions with the LC molecules.  相似文献   

8.
Poly(dimethylsiloxane) (PDMS)-based hybrid materials were prepared by the sol-gel method on Si wafers, Al and polystyrene (PS) substrates. The reaction was monitored by attenuated total reflectance-infrared (ATR-IR) spectroscopy. The hybrid materials have always one surface made in contact with air and one with a substrate. These surfaces were investigated by using tapping mode atomic force microscopy (AFM), X-ray photo-electron spectroscopy (XPS), low-energy ion scattering (LEIS) and dynamic contact angle (DCA) analysis. The hybrid sample surfaces made in contact with air and substrates appeared to have different structures. The former have a silica-free PDMS top layer of ∼2 nm thick; while in the latter cases, SiO2 are located at or just beneath the outermost atomic layer. In air and at room temperature, SiO2 are likely beneath the outermost atomic layer. In contact with water, polar -OH groups at the surface of SiO2 can easily stretch out to the outermost atomic layer. No correlation was found between the roughness of the surfaces and the amount of in situ formed SiO2 present in the materials.  相似文献   

9.
Fu Liu  Bao-Ku Zhu  You-Yi Xu 《Polymer》2007,48(10):2910-2918
Poly(vinylidene fluoride) (PVDF) membrane was pre-irradiated by electron beam, and then poly(ethylene glycol) methyl ether methacrylate (PEGMA) was grafted onto the membrane surface in the aqueous solution. The degree of grafting was significantly influenced by the pH value of the reaction solution. The surface chemical changes were characterized by the Fourier transform infrared attenuated total reflection spectroscopy (FTIR-ATR) and X-ray photoelectron spectroscopy (XPS). Combining with the analysis of the nuclear magnetic resonance proton and carbon spectra (1H NMR and 13C NMR), PEGMA was mainly grafted onto the membrane surface. Morphological changes were characterized by scanning electron microscopy (SEM) and atomic force microscopy (AFM). The porosity and bulk mean pore size changes were determined by a mercury porosimeter. The surface and bulk hydrophilicity were evaluated on the basis of static water contact angle, dynamic water contact angle and the dynamic adsorption process. Furthermore, relative high permeation fluxes of pure water and protein solution were obtained. All these results demonstrate that both hydrophilicity and fouling resistance of the PVDF membrane can be improved by the immobilization of hydrophilic comb-like polymer brushes on the membrane surface.  相似文献   

10.
Surface morphology of asymmetric and homogeneous membranes prepared from poly(phenylene oxide) (PPO) was studied by tapping mode atomic force microscopy (TMAFM). As expected, a significant difference in the morphology between the top and the bottom surfaces of the asymmetric membrane was observed. The images of the top surface revealed a small variation in the vertical direction (6.7 nm), compared to the mean diameter of nodules (62 nm), while the images of the bottom surface were very porous (microfiltration structure). On the other hand, the observed difference in morphology between the top and the bottom surfaces of the membrane prepared by the complete evaporation of the solvent (homogeneous membrane) was rather unexpected. The nodules on the bottom surface were twice as large as those on the top surface. These studies also revealed some differences in the morphology of the top surface of asymmetric and homogeneous membranes. Both surface were made up of nodules having a similar size (62–64 nm); however, roughness parameters calculated for the top surface of the asymmetric membrane were approximately two times greater than those for the top surface of the homogeneous membrane. © 1996 John Wiley & Sons, Inc.  相似文献   

11.
《Polymer》2014,55(26):6853-6860
Blends of linear low density polyethylene (LLDPE) and ethylene vinyl alcohol (EVOH) with different weight fractions are extruded to fabricate thin films. The extruded blend film morphology is investigated by atomic force microscopy (AFM). The extruded blend films have shown extended morphology along the extrusion direction (ED) and dispersed morphology along the transverse direction (TD). We report that due to this morphology, a two-dimensional (2-D) confined crystallization occurs. The EVOH has successfully confined the LLDPE from both film normal direction (ND) and transverse direction (TD) in this study. The confinement from ND results in an on-edge orientation of LLDPE, while the confinement from TD forces the on-edge oriented LLDPE crystals to further elongate and extend along the extrusion direction (ED). This specific crystal orientation is different from one-dimensional (1-D) confined crystallization observed in multilayered films. Both wide angle X-ray scattering (WAXS) and small angle X-ray scattering (SAXS) are utilized to investigate the crystal orientations of LLDPE in the extruded blend films. Moreover, due to the morphology, the extruded blend films have shown high oxygen barrier properties, which make this material valuable in packaging applications.  相似文献   

12.
The structure–transport properties of mixed soft‐segmented poly(urethane‐imide) (MSPUI) membranes and their microstructures were investigated. Polypropylene glycol, polycaprolactone diol and bis(3‐aminopropyl)‐terminated polydimethylsiloxane were used as the soft segments in the membrane synthesis via a three‐step polymerization reaction. The chemical structures of the MSPUI membranes were characterized using attenuated total reflectance Fourier transform infrared spectroscopy. Morphology and surface properties of the membranes were studied using scanning electron and atomic force microscopy techniques. Surface energy measurements indicated the enrichment of the hydrophobic soft segment in the membranes. The amorphous nature of the polymers was analysed using wide‐angle X‐ray diffraction. The effect of morphology on the permeability and selectivity of the membranes is discussed. Finally, membrane structure–transport property relationships were correlated. © 2013 Society of Chemical Industry  相似文献   

13.
Hydrophobic poly (vinylidene fluoride) (PVDF) membrane surface was treated with atmospheric pressure low temperature plasma and investigated physical and chemical surface characterization. The contact angle of water on the exposed membrane surface was reduced with increasing of the treatment voltage and time, so indicates that the treatments can modify the PVDF membrane surface from hydrophobic to hydrophilic. In order to analyze the phenomenon in detail, the progress of defluorination including dehydrofluorination and oxidation reactions onto the surface was examined by X-ray photoelectron spectroscopy (XPS), and revealed the most effective treatment condition. The degree of grafting used acrylic acid monomer onto the surface has influenced with monomer concentration, reaction temperature and reaction time. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) were employed to study the surface morphology. The membrane surfaces conjugated bovine serum albumin (BSA) as a protein were surely detected the nitrogen element contained with BSA.  相似文献   

14.
Yongjin Li  Yuko Oono  Hiroshi Shimizu 《Polymer》2006,47(11):3946-3953
The miscibility for melt-mixed poly(vinylidene fluoride) (PVDF)/acrylic rubber (ACM) blends and the crystal morphology of PVDF in the blends were investigated over the whole composition ranges by dynamic mechanical analysis (DMA), wide-angle X-ray diffraction (WAXD), small-angle X-ray scattering (SAXS), and transmission electron microscopy (TEM). DMA measurements revealed that PVDF is miscible with ACM in ACM-rich system, and partially miscible in PVDF-rich system. Two kinds of PVDF lamellar structures with different long periods were detected by SAXS and TEM for the partially miscible blends. In the miscible system, only one kind of crystal lamellae with enlarged long period is found. The two kinds of lamellar structures in the blend show different orientation behavior during the uniaxial stretching to result in a biaxial orientation. The lamellae with short long period are oriented vertical to the stretching direction, while those with large long period were found to be oriented parallel to the stretching direction.  相似文献   

15.
Expanded poly(tetrafluoroethylene) (ePTFE) membranes were modified by graft copolymerization with methoxyacrylethyl phosphate (MOEP) in methyl ethyl ketone (MEK) solutions at ambient temperature using gamma irradiation. The effect of monomer concentration (3–30%) was studied and the modified membranes were characterized by weight increase, x‐ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), contact angle measurements, and differential scanning calorimetry (DSC). Results show that the ePTFE membrane had a degree of crystallinity of 59% and that this did not significantly change after grafting indicating that grafting occurs in the amorphous regions. SEM images showed a globular surface morphology for the grafted membranes. XPS was used to evaluate the chemical structure of the graft copolymer and to determine the XPS grafting extent using the C‐F (ePTFE membrane) and the C‐C (MOEP graft copolymer) peaks. The graft yield as well as grafting extent was found to increase with increasing monomer concentration. Concomitantly, the contact angle was found to decrease with increasing monomer concentration. No direct correlation was found between XPS grafting extent and the advancing water contact angle illustrating that the former does not adequately give an indication of the copolymer surface coverage of the first molecular layer. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

16.
Nanofibrous ultrafiltration membranes based on the thin-film nanofibrous composite (TFNC) format with a nanocomposite barrier layer made of cross-linked poly(ethylene glycol) (PEG) matrix and ultra-fine cellulose nanofibers (CN, ∼5 nm in diameter) were demonstrated. Physical properties, including pore size, chemical composition, morphology, hydrophilicity and surface roughness of these membranes, were characterized by filtration test, attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR), scanning electron microscopy (SEM), water contact angle measurements and atomic force microscopy (AFM). It was found the cross-linked PEG/CN barrier layer was highly hydrophilic and had excellent anti-fouling properties, which were confirmed by short-term and long-term fouling tests using bovine serum albumin (BSA) solution (1 g/L). In addition, the membranes exhibited better anti-fouling properties and recovery ability than comparable commercial membranes (e.g., Pall Life Sciences omega membranes and Koch HFK 328 membranes). For example, the flux of the composite layer was about twice as high as that of commercial membranes during the long-term testing, while the rejection was maintained above 90%.  相似文献   

17.
Bacterial poly[(R)-3-hydroxybutyrate-co-(R)-3-hydroxyhexanoate] (PHBH) highly oriented films were prepared by the combination of roll and uniaxial drawing processes. The change in the higher-order structure of PHBH films was investigated by wide-angle X-ray diffraction (WAXD) and small angle X-ray scattering (SAXS). Extended films, which show superior mechanical properties and high ductility, have complicated structures. By roll extension, both deformed and undeformed spherulites co-exist, the former inclined to the direction perpendicular to the film surface. The latter were destroyed by further uniaxial extension. The tie-molecules between uniaxially oriented lamellae were extended and transformed to the β-form with a planar zig-zag conformation. Three kinds of structures, c-axis parallel to the uniaxial drawing direction, c-axis inclining to the normal vector of the film surface, and the β-form between lamellae, are intermingled in the film.  相似文献   

18.
In this article, polyvinylidene fluoride (PVDF)/ZnO hybrid membranes with different forms of nano-ZnO as additives were prepared by thermally induced phase separation. The effects of the morphology of ZnO particles on the microstructure and properties of hybrid membranes were systematically investigated. Three different forms of nano-ZnO were characterized by X-ray diffraction (XRD) and scanning electron microscope (SEM). Then a series of tests were made through XRD, Fourier transform infrared, differential scanning calorimeter, SEM, energy-dispersive X-ray spectroscopy, atomic force microscopy, mechanical strength testing, porosity measurement, water contact angle measurement, pure water flux measurement, rejection measurement, flux recovery rate (FRR) measurement, and photocatalytic degradation testing to characterize the hybrid membrane. The results show that the hybrid membranes which were doped with different forms of ZnO have different structures and properties. Porous ZnO has the best modification effect on PVDF membranes. The PVDF/porous ZnO hybrid membranes' water flux and OVA rejection can reach 1.6 and 1.3 times of pure PVDF membrane, respectively, and its FRR can reach about 95%. The hybrid membrane doped with porous ZnO has excellent self-cleaning performance, and its degradation rate of MB can reach about 51%.  相似文献   

19.
Ultrafiltration (UF) membranes based on poly(vinyl chloride) and poly(vinyl pyrrolidone) blends were prepared by the phase inversion method, and the factors governing membrane properties were investigated. The membranes were characterized by scanning electron microscopy and atomic force microscopy. The fouling characteristics of the membranes were determined by UF of aqueous solutions of bovine serum albumin (BSA) over a pH range of 2–9 and varying salt concentrations. The maximum adsorption of the protein on the membrane surface occurred near the isoelectric point (pI 4.8) of BSA, and the presence of the salts increased the fouling of the membrane. The results can be explained in terms of the nature of the membrane polymer and the effect of different ionic environments on the permeability of the deposited protein layer. The net charge on the BSA molecules appears to be a dominant factor in determining the flux of water through the blend membranes. The UF flux is correlated by a model based on the membrane resistance, adsorbed protein resistance, and time dependent resistance of the concentration polarization layer near the membrane surface. The ζ potentials of the membranes were also determined before and after UF to characterize the surface potential of the membrane. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 77: 2606–2620, 2000  相似文献   

20.
The aim of this study was to improve the mechanical performance of biodegradable poly(L-lactic acid) through equal channel angular extrusion (ECAE). Changes in morphology induced by the ECAE shear deformation in poly(lactic acid) (PLA) were investigated. Differential scanning calorimeter results suggested a significant improvement in crystallinity of ECAE-deformed PLA depending on its thermal condition and deformation force. Two-dimensional wide angle X-ray diffraction measurement and polarized FTIR spectroscopies of ECAE-deformed PLA revealed a structural network in the crystalline region, and the taut tie molecules (TTMs) connecting lamellae also stretched. Scanning electron microscope results showed that the macro-fibrils were generated, and the oriented structures were arranged along the nominal shear direction at a certain angle. Both the inclined macro-fibrils structure and the oriented TTMs within fibrils were beneficial in improving mechanical performance. Finally, the mechanical property tests showed that the mechanical properties of PLA were improved overall. The tensile strength, elongation, impact strength, and bending strength increased by 28%, 123.8%, 224.3%, and 47.6%, respectively. Meantime, a transition from brittle fracture to ductile fracture was observed from the original PLA billet to ECAE-deformed one. Therefore, the ECAE process represents a promising approach for comprehensively reinforced PLA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号