首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The controlled/“living” radical polymerization of methyl methacrylate (MMA), 2-hydroxyethyl methacrylate (HEMA), and styrene by atom transfer radical polymerization (ATRP) is reported. The effect of initiators and reaction conditions on the ATRP results was investigated. Controlled polymerizations with predictable molecular weights were performed on MMA at 40 ○C and 80 ○C using a CuCl/bipyridine (bipy) catalyst system in conjunction with 1-bromoethyl benzene as the initiator. The addition of a polar solvent was necessary to decrease the polymerization rate and afford low polydispersity materials. The ATRP processes followed a first-order kinetics with respect to the monomer concentration. The molecular weights of the resulting polymers were very close to their calculated values and increased with the conversion. The ATRP results of styrene showed a similar trend and revealed that CuBr/bipy or CuBr/PMDETA was a more suitable catalyst system than CuCl/bipy. In addition, it was found that controlled polymerizations could be readily carried out both in a nonpolar solvent or in bulk. Furthermore, by using the bromine-terminated polymer as the macroinitiator, diblock copolymers of PSt-b-PMMA, PSt-b-PHEMA, PMMA-b-PSt, and PMMA-b-PHEMA could be obtained. Thermal analysis and X-ray diffraction studies confirmed the amorphous structures of the resulting polymers.  相似文献   

2.
考察了原子转移自由基聚合(ATRP)乳液聚合中的三类催化体系CuCl/bpy、CuC/bde、CuCl/dNbpy在油水两相中的浓度分配情况及对聚合反应的影响。结果表明:催化体系中配体疏水性的好坏影响其在油水两相中的浓度分配.并进一步影响聚合反应的可控性。dNbpy的疏水性明显优于bde和bpy.聚合反应具有典型的活性特征;而bpy、bde两种配体的聚合反应可控性较差。  相似文献   

3.
Atom transfer radical polymerization (ATRP) is a promising method to synthesize well‐defined polymer/inorganic nanoparticles. However, the surface‐initiated ATRP from commercially mass produced inorganic nanoparticles has seldom been studied. In this study, the surface‐initiated ATRP of methylmethacrylate (MMA) from commercially mass produced fumed silica (SiO2) nanoparticles was investigated. Unlike the ATRP of MMA initiated from a free initiator, the controllability of ATRP of MMA from the surface of fumed silica nanoparticles was much better using ligand 2,2'‐bipyridine (bpy) than N,N,N′,N′′,N′′‐pentamethyldiethylenetriamine (PMDETA) as the initiator was immobilized on the surface of the SiO2 nanoparticles and the presence of the SiO2 nanoparticles made the CuCl/bpy catalyst system a homogeneous catalyst system and CuCl/PMDETA a heterogeneous one. The appropriate molar ratio of monomer and initiator was essential for preparing controlled PMMA/SiO2 nanoparticles. The entire process of ATRP of MMA from the surface of SiO2 nanoparticles was controllable when using bpy as ligand, xylene as solvent and with a monomer to initiator ratio of 300:1. The 1H NMR results indicated that the PMMA on the surface of the SiO2 was prepared via ATRP initiated from 4‐(chloromethyl)phenyltrimethoxysilane. The well‐defined PMMA/SiO2 nanoparticles obtained have good thermal stability and are well dispersed in organic media as proved by TGA, dynamic light scattering and transmission electron microscopy. © 2013 Society of Chemical Industry  相似文献   

4.
Xin Yuan  Qingfeng Xu 《Polymer》2005,46(21):9186-9191
Functionalized polystyrene (PSt) was synthesized utilizing atom transfer radical polymerization (ATRP), which was conducted by using 2-(4-chloromethyl-phenyl)-benzoxazole (CMPB) as initiator, CuCl/PMDETA as catalyst, and cyclohexanone as solvent. The mechanism of ATRP was proved by characterizing the structure of PSt via 1H NMR and preparing of PSt-b-PMMA block copolymer. The polymerization showed first order with respect to monomer concentration and relatively narrow polydispersity (Mw/Mn range from 1.30 to 1.50). Factors such as different reaction temperatures, mole ratio of monomer to initiator and so on, which can affect the ATRP system, were discussed in the paper. Moreover, CMPB showed high activity and could initiate styrene polymerization even at ambient temperature. The optical property of initiator was well preserved in the obtained PSt, and the end-functionalized PSt exhibited strong fluorescent emission at 351 nm.  相似文献   

5.
Peng LiKun-Yuan Qiu 《Polymer》2002,43(10):3019-3024
Reverse atom transfer radical polymerization (ATRP) of styrene initiated with tetraethylthiuram disulfide (TD)/cuprous bromide (CuBr)/2,2′-bipyridine (bpy) has been successfully carried out at 120 °C. The kinetic plot was first order in monomer. The measured number-average molecular weight was in good accordance with the theoretical one. Radical scavenger 1,1-diphenyl-2-picrylhydrazyl (DPPH) immediately terminated the reaction, which supported the radical essence of this polymerization. 1H NMR and UV spectra analyses revealed α-S2CNEt2 and ω-Br end groups on the polystyrene chain. Conventional ATRP of methyl methacrylate could progress with the obtained polymer acting as the macroinitiator and CuBr/bpy or CuCl/bpy as the catalyst.  相似文献   

6.
以甲基丙烯酸甲酯(MMA)为单体,偶氮二异丁腈(AIBN)为引发剂,以氯化铜(CuCl2)/2,4,6-三(二甲氨基甲基)苯酚(DMP-30)为催化体系,以乙醇为溶剂,进行了甲基丙烯酸甲酯的反向原子转移自由基沉淀聚合。聚合反应速率对单体呈一级动力学特征,数均分子量与单体转化率呈线性关系。  相似文献   

7.
Atom transfer radical polymerization of n‐butyl methacrylate (BMA) was conducted in an aqueous dispersed system with different kinds of copper complexes. The partitioning behavior of the copper complexes, including CuCl/4,4′‐di(5‐nonyl)‐2,2′‐bipydine (dNbpy), CuCl2/dNbpy, CuCl/2,2′‐bipydine (bpy), CuCl2/bpy, CuCl/bis(N,N′‐dimethylaminoethyl)ether (bde), and CuCl2/bde between the monomer (BMA), and water was studied in detail with ultraviolet‐visible spectroscopy. The results show that with a less hydrophobic ligand, such as bpy or bde, most of the Cu(I) or the Cu(II) complexes migrated from the BMA phase to the aqueous phase, the atom transfer equilibrium was destroyed, and the polymerization was nearly not controlled; it converted to classical emulsion polymerization. As to the very hydrophobic ligand dNbpy, although the partitioning study of the copper complexes indicated that not all the copper species were restricted to the organic phase, the linear correlation between the molecular weight and the monomer conversion and the narrow polydispersities confirmed that the polymerization was still quite well controlled. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 3175–3179, 2003  相似文献   

8.
Uma Chatterjee 《Polymer》2005,46(5):1575-1582
ATRP of several methacrylates viz. methyl methacrylate (MMA), ethyl methacrylate (EMA), n-butyl methacrylate (nBMA), t-butyl methacrylate (tBMA), benzyl methacrylate (BzMA) and (N,N-dimethylamino)ethyl methacrylate (DMAEMA) has been studied in neat as well as aqueous (up to 12 vol% water) acetone at 35 °C using CuCl/bipyridine (bpy) catalyst and ethyl 2-bromoisobutyrate as the initiator. Addition of water significantly enhances the rate of polymerization without losing control. Unlike CuCl/bpy the CuBr/bpy catalyst gives poor control which is attributed to the lower solubility and consequent heterogeneity in the latter case. Of the other ligands used with the CuCl catalyst viz. o-phenanthroline (o-phen), 1,1,4,7,7-pentamethyldiethylenetriamine (PMDETA), 1,1,4,7,10,10-hexamethyltriethylenetetramine (HMTETA), Me6TREN only o-phen offers reasonably good control. The CuCl/bpy catalyst system has been used also in preparing some di- and tri-block copolymers with reasonably low polydispersity index (PDI) at ambient temperature (35 °C) using aqueous acetone as the solvent. The following block copolymers have been prepared PMMA-tBMA, PMMA-b-tBMA-b-MMA, PMMA-DMAEMA, by this method.  相似文献   

9.
Copper‐mediated atom transfer radical polymerization (ATRP) is versatile for living polymerizations of a wide range of monomers, but ATRP of vinyl acetate (VAc) remains challenging due to the low homolytic cleavage activity of the carbon‐halide bond of the dormant poly(vinyl acetate) (PVAc) chains and the high reactivity of growing PVAc radicals. Therefore, all the reported highly active copper‐based catalysts are inactive in ATRP of VAc. Herein, we report the first copper‐catalyst mediated ATRP of VAc using CuBr/2,2′:6′,2″‐terpyridine (tPy) or CuCl/tPy as catalysts. The polymerization was a first order reaction with respect to the monomer concentration. The molecular weights of the resulting PVAc linearly increased with the VAc conversion. The living character was further proven by self‐chain extension of PVAc. Using polystyrene (PS) as a macroinitiator, a well‐defined diblock copolymer PS‐b‐PVAc was prepared. Hydrolysis of the PS‐b‐PVAc produced a PS‐b‐poly(vinyl alcohol) amphiphilic diblock copolymer. © 2009 American Institute of Chemical Engineers AIChE J, 2009  相似文献   

10.
ATRP of methyl methacrylate (MMA), initiated with 1,3-bis{1-methyl-1-[(2,2,2-trichloroethoxy)carbonylamino]ethyl}benzene as a bifunctional initiator (BI) under CuCl catalysis was studied in the presence of 2,2′-bipyridine (bpy) or hexamethyltriethylenetetramine (HMTETA) ligands, in bulk or in toluene. With the bpy, the polymerization reaches only limited monomer conversions and products have broad MWDs. In contrast, polymerization in the presence of HMTETA is a well-controlled process, affords virtually quantitative conversion, giving PMMAs with narrow MWDs and predictable molecular weights within a range of more than one order of magnitude. NMR analysis of the prepared PMMA proved formation of linear polymers with im-measurable extent of chain branching or β-scission as undesired side reactions. The prepared α,ω-dichloro-PMMAs were used as macroinitiators for ATRP of tert-butyl acrylate (t-BuA), giving the corresponding triblock copolymers with narrow MWDs and molecular weights controllable in a wide range. Block copolymerizations were performed in dimethyl formamide (DMF) or acetone in the presence of pentamethyldiethylenetriamine (PMDETA) as ligand and could be accelerated by addition of metallic copper.  相似文献   

11.
以乙醇为溶剂,溴化亚铜(CuBr)为催化剂,溴乙酸乙酯为引发剂,1,10菲罗啉和N,N,N',N',N'-五甲基二乙烯基三胺(PMDETA)分别为配体的催化体系,进行了甲基丙烯酸甲酯的原子转移自由基沉淀聚合,通过GPC和称重量法对聚合物进行表征。结果表明,两种催化体系下MMA的转化速率较快,甲基丙烯酸甲酯的原子转移自由基沉淀聚合得到了较好的实现,得到了分子量分布较窄的聚合物。  相似文献   

12.
The atom transfer radical polymerization (ATRP) of methyl methacrylate catalyzed by copper–tripodal complexes with ferrocene moieties (CuX/TRENFcImine, where X is Br or Cl, and TRENFcImine is tris‐[2‐(ferrocenylmethyleneimino)ethyl]amine) was investigated to understand the effect of redox active moieties on the performance of ATRP catalysts. The CuBr/TRENFcImine system was highly active, with 82% conversion in 2 h. However, the polymerization became slower at higher molar ratios of monomer to catalyst. The polydispersity index was broad, and the initiation efficiency was relatively low. On the basis of the conformational analysis, the highly active and less controlled polymerization was probably caused by the electronic effect rather than the steric effect on the ferrocene moieties, which led to the higher and lower values in the activation and deactivation steps, respectively. The polydispersity index was improved by the addition of CuBr2, but this led to slower rates of polymerization. The effect of halide groups on ATRP caused a faster rate in the CuBr/TRENFcImine polymerization system than in the CuCl/TRENFcImine system. The higher molar ratio of monomer to catalyst had no significant effect on the CuCl/TRENFcImine system. Nonetheless, the trace of water in the CuCl2·2H2O system accelerated the rate of propagation, which led to a higher molecular weight. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

13.
The atom transfer radical polymerization (ATRP) of n‐docosyl acrylate (DA) was studied at 80°C in N,N‐dimethylformamide using the carbon tetrabromide/FeCl3/2,2′‐bipyridine (bpy) initiator system in the presence of 2,2′‐azobisisobutyronitrile (AIBN) as the source of reducing agent. The rate of polymerization exhibits first‐order kinetics with respect to the monomer. The linear relationship between the molecular weight of the resulting poly(n‐docosyl acrylate) with conversion and the narrow polydispersity of the polymers indicates the living characteristics of the polymerization reaction. The significant effect of AIBN on the ATRP of DA was studied keeping [FeCl3]/[bpy] constant. A probable reaction mechanism for the polymerization system is postulated to explain the observed results. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 97: 2147–2154, 2005  相似文献   

14.
A ligand is a crucial element for atom transfer radical polymerization (ATRP). A new nitrogen-containing compound, 1,1’-(2,2’-(ethane-1,2-diylbis(butyl azanediyl)) -bis(ethane-2,1-diyl)) dipyrrolidin-2-one (DBBD), was synthesized and utilized as the ligand of copper halide for ATRP of methyl methacrylate (MMA) and methyl acrylate (MA). It was found that the CuBr/DBBD and Ethyl 2-bromoisobutyrate (EBIB) system could mediate the polymerization of MMA and the reaction was first-order kinetics, although the control of molecular weights was not perfect. When CuCl was used to replace CuBr, the molecular weights of obtained polymers were well controlled, which indicated the halide exchange could improve the controllability. In the polymerization of MA using Methyl 2-bromopropronate (MBP) or EBIB as initiator and CuCl/DBBD as catalyst, good control of the polymerization could be achieved and the molecular weights were very close to the predicted value.  相似文献   

15.
The ligands, 2,6-bis(NH-benzimidazol-2-yl)pyridine (L1) and 2,6-bis(N-methyl-benzimidazol-2-yl)pyridine (L2), were synthesized by a one-step reaction of 2,6-pyridinedicarboxylic acid with a diamine (o-phenylenediamine or N-methyl-1,2-phenylenediamine), respectively, in syrupy phosphoric acid at ca. 200 °C. Their efficiency as a catalyst in Cu-based atom transfer radical polymerizations (ATRP) of methylmethacrylate (MMA) was investigated. The linear first-order kinetic plots were observed; indicating that the number of active species is constant during the polymerization and termination reactions are limited. The apparent rate constant values of ATRP of MMA with CuCl/L1 catalyst system at 90 °C in acetonitrile were found to be between 3.83 × 10?5 and 1.33 × 10?4 s?1, while they were between 1.86 × 10?4 and 4.40 × 10?4 s?1 in the case of CuCl/L2 catalyst, indicating the presence of lower radical concentration throughout the polymerization of MMA using CuCl/L1 catalyst system. In both the cases, low apparent rate constant values are obtained. This indicates that ATRP proceeded at reasonable rates and a good control over ATRP in general. Apparent rate constant vs [ligand]/[catalyst] ratio plots showed a maximum at the [ligand]/[catalyst] ratio of two. M n,GPC values increased slightly linearly with conversion and molecular weight values were closer to M n,th in the case of ATRP of MMA using CuCl/L2 catalyst complex. Cyclic voltammetry measurements confirmed that CuCl/L1 and CuCl/L2 complexes in acetonitrile give reversible redox couples and copper(I) centers in CuCl/L1 and CuCl/L2 catalyst complexes that are readily oxidized and they potentially suit to facile ATRP.  相似文献   

16.
The atom transfer radical polymerization (ATRP) of lauryl methacrylate (LMA) with an ethyl 2‐bromobutyrate/CuCl/N,N,N,N,N″‐pentamethyldiethylenetriamine initiation system was successfully carried out in toluene, and poly(lauryl methacrylate) with a low polydispersity (1.2 < weight‐average molecular weight/number‐average molecular weight < 1.5) was obtained. Plots of ln ([M])0/([M]) versus time and plots of the molecular weight versus conversion showed a linear dependence, indicating a constant number of propagating species throughout the polymerization. The rate of polymerization was 0.56‐order with respect to the concentration of the initiator and 1.30‐order with respect to the concentration of the Cu(I) catalyst. In addition, the effect of the solvent on the polymerization was investigated, and the thermodynamic data and activation parameters for the solution ATRP of LMA were reported. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 1117–1125, 2003  相似文献   

17.
Commercial brominated poly(isobutylene‐co‐isoprene) (BIIR) rubber has been directly used for the initiation of atom transfer radical polymerization (ATRP) by utilizing the allylic bromine atoms on the macromolecular chains of BIIR. The graft copolymerization of methyl methacrylate (MMA) from the backbone of BIIR which was used as a macroinitiator was carried out in xylene at 85 °C with CuBr/N,N,N′,N″,N″‐pentamethyldiethylenetriamine as a catalytic complex. The polymerization conditions were optimized by adjusting the catalyst and monomer concentration to reach a higher monomer conversion and meanwhile suppress macroscopic gelation during the polymerization process. This copolymerization followed a first‐order kinetic behavior with respect to the monomer concentration, and the number‐average molecular weight of the grafted poly(methyl methacrylate) (PMMA) increased with reaction time. The resultant BIIR‐graft‐PMMA copolymers showed phase separation morphology as characterized by atomic force microscopy, and the presence of PMMA phase increased the polarity of the BIIR copolymers. This study demonstrated the feasibility of using commercial BIIR polymer directly as a macromolecular initiator for ATRP reactions, which opens more possibilities for BIIR modifications for wider applications. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43408.  相似文献   

18.
Well‐defined methyl methacrylate (MMA) and 2‐(trimethylsiloxy)ethyl methacrylate (Pro‐HEMA) copolymers were prepared by atom‐transfer radical polymerization(ATRP), using CuCl/2,2′‐bipyridine as catalytic system and p‐toluenesulfonyl chloride as initiator. ATRP process of MMA and Pro‐HEMA was monitored by 1H NMR, and the kinetic curves of the MMA/Pro‐HEMA copolymerization were plotted in terms of the 1H NMR data. At low content of Pro‐HEMA in the feed composition, the copolymerization can be well controlled with the molecular weight, polydispersity and the monomer distribution in the copolymer chain. With the increase of Pro‐HEMA content in the feed mixture, the composition of the final copolymer deviates from the composition of the feed mixture gradually, and gradient copolymers of MMA/Pro‐HEMA can be obtained. Through the hydrolysis process, well‐defined copolymers of MMA/HEMA were obtained from poly(MMA/Pro‐HEMA). Copyright © 2003 Society of Chemical Industry  相似文献   

19.
SBS as polymer I, poly(styrene–methyl methacrylate) polymerized by atom transfer radical polymerization as polymer II, and a thermoplastic interpenetrating polymer network of SBS/poly(styrene–methyl methacrylate) were prepared by the sequential method. The effects of the polymerization temperature, the composition of the catalyst, the ratio of the monomers studied, and the kinetics at 90°C were also investigated. It was shown that when polymerization was initiated by a BPO/CuCl/bpy (BPO:CuCl:bpy = 1:1:3) system at 90°C, the mass averaged molecular weight of the poly(styrene–methyl methacrylate) increased with monomer conversion, and the polydispersities were kept very low. Fourier transform infrared spectroscopy and gel permeation chromatogram showed that poly(styrene–methyl methacrylate) with low polydispersities had been synthesized. Thus, a thermoplastic interpenetrating polymer network comprised of both narrow molecular‐weight‐distribution components was successfully prepared. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 2007–2011, 2003  相似文献   

20.
Amphiphilic diblock copolymers of polystyrene-b-poly(methacrylic acid) were synthesized by means of atom transfer radical polymerization. First, the polystyrene with a bromine atom at the chain end (PS-Br) was prepared using styrene as the monomer, 1-bromoethyl benzene as the initiator, and CuCl/2,2′-bipyridyl (bpy) as the catalyst ([1-bromoethyl benzene]/[CuCl]/[bpy] = 1:1:3). The polymerization was well controlled. Second, the diblock copolymer of polystyrene-b-poly(tert-butyl methacrylate) was synthesized also by atom transfer radical polymerization using PS-Br as the macro-initiator, CuCl/bpy as the catalyst, and tert-butyl methacrylate (tBMA) as the monomer. Finally, the amphiphilic diblock copolymer, PS-b-PMAA, was obtained by hydrolysis of PS-b-PtBMA under the acid condition. The molecular weight and the structure of aforementioned copolymers were characterized with gel permeation chromatography, infrared, and nuclear magnetic resonance. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 82: 2381–2386, 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号