首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Vinyl-type polynorbornene copolymers with side-chain o-carborane (1-phenyl-o-carborane for P1P3; 1-methyl-o-carborane for P4) and carbazole moieties were produced by vinyl addition copolymerization of norbornene monomers using a Pd(II) catalyst in combination with 1-octene chain transfer agent. The catalytic system provided well-defined copolymers with controlled incorporation of monomers. The copolymers possessed high thermal stability with high decomposition (Td5 > 410 °C) and glass transition temperatures (Tg > 350 °C). Treatment of the closo-copolymers (P1P4) with excess KOH in refluxing EtOH/THF led to degradation of the closo-carborane cage to produce nido-copolymers (nido-(P1P4)). While P1P3 exhibited a weak carbazole-based fluorescence, the corresponding nido-copolymers gave rise to a 2.0–3.6-fold increase in PL intensity depending on the comonomer content. An electrochemical study and comparative PL results of P4 and nido-P4 suggest that photoinduced charge transfer from carbazole donors to 1-phenyl-o-carborane acceptors was responsible for the weak fluorescence of P1P3.  相似文献   

2.
Toru Katsumata 《Polymer》2009,50(6):1389-6640
The ring-opening metathesis polymerization (ROMP) of norbornene derivatives 1-5 bearing oligomeric siloxane pendant groups was carried out with Grubbs 1st and 2nd generation, and Grubbs-Hoveyda ruthenium (Ru) catalysts. Monomer 1 gave high-molecular-weight polymers (Mn ca. 27?000-180?000) in high yields (80-100%). Monomers 2-5 also polymerized with Ru carbene catalysts to give high-molecular-weight polymers (Mn ca. 34?000-240?000) in high yields (66-100%). The onset temperatures of weight loss (T0) of the polymers were 180-250 °C. The glass transition temperatures (Tgs) of poly(1) and poly(2) bearing branched siloxane linkages were near or higher than room temperature (27 and 101 °C). Meanwhile, the Tgs of poly(3)-poly(5) bearing linear siloxane linkages were much lower (−115 to −23 °C), and decreased with increasing length of the siloxane linkages. Poly(1) and poly(2) were hydrogenated completely, which was confirmed by 1H NMR spectroscopy. The free-standing membranes of poly(1) and poly(2) showed high gas permeability; especially poly(2) is the most permeable to various gases among ROMP-polynorbornene derivatives reported so far.  相似文献   

3.
Chih-Cheng Lee 《Polymer》2009,50(2):410-3317
A series of vinyl copolymers (PVKST12-PVKST91) and homoploymer PVST containing pendant hole-transporting 4-(4-oxystyryl)triphenylamine (12-100 mol%) and carbazole chromophores were synthesized by radical copolymerization and employed as host for Ir(ppy)3 phosphor to tune emission color. They were characterized using the 1H NMR, FT-IR, absorption and photoluminescence spectra, elemental analysis, GPC, cyclic voltammetric and thermal analysis (DSC, TGA). Their weight-average molecular weights (Mw) and decomposition temperatures (Td) were 1.46-5.68 × 104 and 356-399 °C, respectively. The HOMO levels of PVKST12-PVKST91 and PVST, estimated from the onset oxidation potentials in cyclic voltammograms, were −5.40 to −5.14 eV, which are much higher than −5.8 eV of the conventional host poly(9-vinylcarbazole) (PVK) owing to high hole-affinity of the 4-(4-oxystyryl)triphenylamine groups. Therefore, copolymers PVKST are effective in reducing hole-injection barrier between the PEDOT:PSS and emitting layer. Electroluminescent devices [ITO/PEDOT:PSS/PVKST:Ir(ppy)3:PBD/BCP/Ca/Al] using the hole-transporting PVKST as host were fabricated to tune the emission color. Their EL spectra showed a major emission at 515 nm and a minor peak at 435 nm attributed to Ir(ppy)3 and 4-(4-oxystyryl)triphenylamine, respectively. The C.I.E. 1931 coordinates shift from (0.29, 0.61) for PVK to (0.33, 0.42) for PVST with an increase in 4-(4-oxystyryl)triphenylamine content.  相似文献   

4.
Radical polymerization of butyl acrylate (BA) and random copolymerizations of styrene (St) and BA and St and methyl methacrylate (MMA) in the presence of 7-aza-15-hydroxydispiro[5.1.5.3]hexadecane-7-yloxyl (1) and 1-aza-2,2-dimethyl-4-hydroxyspiro[5.6]dodecane-1-yloxyl (2) were carried out. Radical polymerization of BA at 120 °C in the presence of 1 gave poly(BA) with Mn=20200 and Mw/Mn=1.30 at 23% conversion. The termination of polymerization observed around ∼20% conversion was solved to a certain extent by an addition of small amounts of dicumyl peroxide, and poly(BA) with Mn=37400 and Mw/Mn=1.33 was obtained in 46% yield. Random copolymerizations of St and BA and St and MMA in the presence of 1 and 2 at 80 °C gave the corresponding random copolymers with narrow polydispersities of 1.12-1.38 at the molar fraction above 0.30 of St in feed. The kinetic study for the NO-C bond homolysis of the corresponding alkoxyamines prepared from 1 and 2 were carried out, and evaluation of the preexponential factors (Aact) and the activation parameters (Eact) showed that the steric factors of the nitroxides are reflected mainly on Eact.  相似文献   

5.
The polymerization of 1-β-naphthyl-2-[(p-trimethylsilyl)phenyl]acetylene (8a) with TaCl5-n-Bu4Sn in cyclohexane provided a high molecular weight polymer (9a) (Mw=3.4×106). The corresponding monomers having p-dimethyl-t-butylsilyl and p-dimethyl(10-pinanyl)silyl groups in place of p-trimethylsilyl group in 8a also polymerized in a similar way to give high molecular weight polymers (9b, 9c, respectively; Mw>1×106). All these polymers were soluble in many common solvents such as toluene and chloroform, and provided free-standing membranes by casting from toluene solution. The oxygen permeability coefficients (PO2) of 9a at 25 °C was as high as 3500 barrers. The membrane of poly(1-β-naphthyl-2-phenylacetylene) (10a) was prepared by desilylation of the membrane of 9a with trifluoroacetic acid. Polymer 10a was insoluble in any solvents, and showed high thermal stability (the onset temperature of weight loss in air ∼470 °C). The PO2 value of 10a reached 4300 barrers. Not only the membrane of 9c but also its desilylation product 10c exhibited large optical rotations ([α]D=+2924 and +9800°, respectively) and strong CD signals. This indicates that the membrane of 10c maintains the helical main chain conformation of 9c with a large excess one-handed helix sense.  相似文献   

6.
Chiral polymers P-1 and P-2 were prepared by the polymerization of (R)-3,3′-diiodo-2,2′-bisbutoxy-1,1′-binaphthyl ((R)-M-1) and (S)-3,3′-diiodo-2,2′-bisbutoxy-1,1′-binaphthyl ((S)-M-1) with 2,5-bis[(4-tributylstannyl)phenyl]-1,3,4-oxadiazole (M-2) via Pd(PPh3)4 catalyzed Stille coupling reaction. 1,3,4-Oxadiazole unit not only has high electron affinity, high thermal and oxidative stability, but also serves as a good chromophore. Polymers have strong blue fluorescence due to the efficient energy migration from the extended π-electronic structure of the polymers to the chiral binaphthyl core and can be expected to have potential application in the materials of fluorescent sensors. Circular dichroism (CD) spectra of polymers P-1 and P-2 are almost identical except that they gave opposite signals at each wavelength. The long wavelengths CD effect of P-1 and P-2 can be regarded as the more extended conjugated structure in the repeating unit and a high rigidity of the polymer backbone.  相似文献   

7.
Rupei Tang  Caixia Cheng  Fu Xi 《Polymer》2005,46(14):5341-5350
Two dendronized poly(p-phenylene vinylene) (PPV) derivatives, ED-PPV and BB-PPV, have been successfully synthesized according to the Gilch route. The obtained polymers possess excellent solubility in common solvents, good thermal stability with 5% weight loss temperature of more than 340 °C. The weight-average molecular weight (Mw) and polydispersity index (PDI) of ED-PPV and BB-PPV are in the range of (1.26-2.34)×105 and 1.37-1.45, respectively. Polymer light-emitting diodes (PLEDs) with the configuration of ITO/PEDOT:PSS/polymer/Ca/Al devices were fabricated, and the PLEDs emitted green-yellow light. The turn-on voltages of the PLEDs based on ED-PPV and BB-PPV were approximately 4.3, and 4.5 V, respectively. The PLED devices of ED-PPV exhibited the maximum luminance of about 157 cd/m2 at 10.5 V. Photovoltaic cells with the configuration of ITO/PEDOT:PSS/polymer:C60 (1:1)/Al were also fabricated, and the energy conversion efficiency of the devices based on ED-PPV and BB-PPV was measured to be 0.58, and 0.014%, respectively, under the white light at 75 mW/cm2.  相似文献   

8.
The reaction of (R,R)-trans-1,2-bis(2,4,6-triisopropylbenzenesulfonamidato)cyclohexane (RRTBSC-H2, 1) with MN[Si(CH3)3] in tetrahydrofuran (THF) produces [(RRTBSC)2M4(THF)4] (2: M = Li, 3: M = Na, 4: M = K). Experimental results show that all three complexes 2-4 are active toward the ring-opening polymerization of l-lactide and compound 2 efficiently catalyzes the polymerization of l-lactide in the presence of a variety of alcohols in a controlled fashion with very narrow polydispersity index. In addition, a variety of biodegradable poly(l-lactide)-block-poly(Nξ-carbobenzyloxy-l-lysine) block copolymers with different ratios have also been synthesized using poly(l-lactide) containing amino chain end (PLLA-NH2) as a macroinitiator.  相似文献   

9.
We report on the synthesis and characterization of a series of donor–acceptor copolymers (PF1, PF2, PF3 or PF4) based on a dinaphtho-s-indacene (DNI) donor unit and four different acceptor units. The molecular weights of the copolymers were determined by using gel permeation chromatography, and their electrochemical properties were investigated by cyclic voltammetry. All four copolymers showed deep-lying highest occupied molecular orbital energy levels. Inverted bulk heterojunction solar cells were fabricated by using the synthesized copolymers as the electron donor material and 6,6-phenyl-C71-butyric acid methyl ester (PC71BM) as the electron acceptor material. Inverted solar cells based on PF1:PC71BM (1:4, w/w) exhibited a power conversion efficiency (PCE) of 3.07%, a high open-circuit voltage (Voc) of 0.99 V, a short-circuit current density (Jsc) of 7.85 mA/cm2, and a fill factor of 39.5% under the AM1.5G illumination. With the same fabrication method, the inverted devices based on PF2, PF3 and PF4 showed PCEs of 2.62, 1.18 and 1.32%, and Voc values of 0.97, 0.91 and 0.80 V, respectively.  相似文献   

10.
Polymers P-1, P-2, P-3, P-4 and P-5 were synthesized by the polymerization of 5,8-bis(ethynyl)isoquinoline (M-1) with (R)-3,3′-diiodo-2,2′-bisbutoxy-1,1′-binaphthyl ((R)-M-2), (S)-3,3′-diiodo-2,2′-bisbutoxy-1,1′-binaphthyl ((S)-M-2), (R)-6,6′-dibromo-2,2′-bisbutoxy-1,1′-binaphthyl ((R)-M-3), (S)-6,6′-dibromo-2,2′-bisbutoxy-1,1′-binaphthyl ((S)-M-3), and rac-6,6′-dibromo-2,2′-bisbutoxy-1,1′-binaphthyl (M-4) under Sonogashira reaction, respectively. Both monomers and polymers were analyzed by NMR, MS, FT-IR, UV-vis spectroscopy, DSC-TGA, fluorescence spectroscopy, GPC and circular dichroism (CD) spectroscopy. CD spectra of polymers P-1 and P-2, P-3 and P-4 are almost identical except that they gave opposite signals at each wavelength. The long wavelength CD effect of P-1 and P-2 can be regarded as the more extended conjugated structure in the repeating unit and the helical backbone in the polymer chain. All five polymers have strong blue-green fluorescence due to the efficient energy migration from the extended π-electronic structure of the repeating unit of the polymers to the chiral binaphthyl core and are expected to provide understanding of structure-property relationships of the chiral conjugated polymers.  相似文献   

11.
A series of novel amphiphilic fluorescent CBABC-type pentablock copolymers (Py-PMMA-PEG4600-PMMA-Py) were prepared from BAB-type amphiphilic triblock copolymer (PMMA-PEG4600-PMMA) as macroinitiator with various contents of 1-(methacryloyloxyethylamino-carboxylmethyl) pyrene (PyMOI) by atom transfer radical polymerization (ATRP) in toluene using CuBr/2,2-bipyridine as catalyst system. Triblock copolymer (PMMA-PEG4600-PMMA) was prepared by ATRP and obtained from Br-PEG4600-Br as macroinitiator with methyl methacrylate in tetrahydrofuran using the same catalyst. The molecular weights of pentablock copolymers which were reinitiated by PMMA-PEG4600-PMMA macroinitiator were calculated from 1H NMR spectra up to 42,400 gmol−1. The polydispersity of pentablock copolymers obtained from GPC analysis was narrow between 1.10 and 1.38. The crystallinity of triblock copolymer (PMMA-PEG4600-PMMA) was decreased slightly with incorporating PMMA segment. Introducing the bulky pyrene substituent into pentablock copolymer, the melting temperature was not observed and all pentablock copolymers showed amorphous patterns in wide-angle X-ray scattering (WAXS) due to decrease in the degree of crystallinity of polymer chain because of disturbing regular packing. The temperatures at 10% weight loss (Td10), examined by TG analysis, showed values ranging from 265 to 323 °C in nitrogen and 264 to 313 °C in air. Fluorescence spectra of Py-PMMA-PEG4600-PMMA-Py exhibited stronger excimer emission at ca. 480 nm due to the aggregations of pyrene group formed via interaction of the hydrophobic chains. The more content of PyMOI segment in pentablock copolymers can obtain the higher emission intensity ca. 480 nm. When there were higher PyMOI contents (84.9 wt% PyMOI) in pentablock copolymers, they formed larger aggregates (210 nm) in SEM micrographs. On the other hand, while increasing the concentration of the polymer solution in THF, the morphology was changed from spherical (0.1 mg/mL) to chainlike (1.0 mg/mL) aggregates.  相似文献   

12.
Synthesis and properties of helical polyacetylenes containing carbazole   总被引:1,自引:0,他引:1  
Jinqing Qu  Toshio Masuda 《Polymer》2007,48(2):467-476
Novel acetylene monomers containing carbazole with chiral menthyl and bornyl groups, 9-(1R,2S,5R)-menthyloxycarbonyl-2-ethynylcarbazole (1), 9-(1S,2R,5S)-menthyloxycarbonyl-2-ethynylcarbazole (2), 9-(1R,2S,5R)-menthyloxycarbonyl-3-ethynylcarbazole (3) and 9-(1S)-bornyloxycarbonyl-2-ethynylcarbazole (4) were synthesized and polymerized with a Rh catalyst to give the corresponding polymers [poly(1)-poly(4)] with moderate Mn value of (11.5-92.2) × 103 in good yields (77-89%). CD spectroscopic studies revealed that poly(1), poly(2) and poly(4) took predominantly one-handed helical structure in CHCl3, THF, toluene, and CH2Cl2, while poly(3) did not. Addition of methanol to CHCl3 solutions of poly(1) and poly(2) resulted in the formation of aggregates showing smaller CD signals at 275 and 320 nm. The helical structure of poly(1) and poly(2) was very stable against heating. The polymers emitted fluorescence in 0.40-2.90% quantum yields. Poly(4) exhibited an obvious oxidation peak at 1.10 V. The polymers were thermally stable below 300 °C.  相似文献   

13.
Melissa A Grunlan 《Polymer》2004,45(8):2517-2523
A series of 1,9-bis[glycidyloxypropyl]pentasiloxanes (IV-VI) were prepared by the platinum catalyzed hydrosilylation of 1,9-dihydridodecamethylpentasiloxane (I), 1,9-dihydrido-3,5,7-tris(3′,3′,3′-trifluoropropyl)heptamethylpentasiloxane (II), and 1,9-dihydrido-3,5,7-tris(1′H,1′H,2′H,2′H-perfluorooctyl)heptamethylpentasiloxane (III) with allyl glycidyl ether. Subsequently, IV-VI were copolymerized with piperazine to form high molecular weight copoly(carbosiloxane)s (VII-IX). The structures of the 1,9-bis[glycidyloxypropyl]penta-siloxanes (IV-VI) and copoly(carbosiloxane)s (VII-IX) were determined by 1H, 13C, 29Si, and 19F NMR as well as IR spectroscopy. The molecular weight distributions (Mw/Mn) of VII-IX have been characterized by gel permeation chromatography and their thermal properties measured by differential scanning calorimetry and thermal gravimetric analysis.  相似文献   

14.
4-Vinylbenzyl glucoside peracetate 1 was polymerized with α,α′-bis(2′,2′,6′,6′-tetramethyl-1′-piperidinyloxy)-1,4-diethylbenzene 2 in chlorobenzene using (1S)-(+)-10-camphorsulfonic acid anhydrous (CSA) as an accelerator ([1]=0.4 M,[1]/[2]/[CSA]=75/1/1.3) at 125 °C for 5 h. The polymerization afforded poly(4-vinylbenzyl glucoside peracetate) having TEMPO moieties on both sides of the chain ends, 3, with a molecular weight (Mw,SLS) of 8500, a polydispersity index (Mw/Mn) of 1.09, and an average degree of polymerization of the 1 unit (x) of 17. Styrene (St) was polymerized with 3 in chlorobenzene at 125 °C (St/chlorobenzene=1/2, w/w). The polymerization successfully afforded polystyrene-poly(4-vinyl glucoside peracetate)-polystyrene, 4, when the polymerization time was below about 2 h. Polymer 4 with the Mw,SLS of 12,500, 17,900, and 29,400, the compositions (y-x-y) of 20-17-20, 45-17-45, and 100-17-100, and the Mw/Mn of 1.12, 1.14 and 1.17 were modified by deacetylation using sodium methoxide in dry-THF into polystyrene-poly(4-vinyl glucoside peracetate)-polystyrene, 5. The solubility of polymer 5 was examined using a good solvent for polystyrene such as toluene and for the saccharide such as H2O.  相似文献   

15.
The copolymerization of ethylene with 8-triarylamine (TAA) substituted 1-octene monomers (TAA = triphenylamine (M1), N,N-diphenyl-m-tolylamine (M2), N,N-diphenyl-1-naphthylamine (M3)) using various types of group 4 single-site catalytic systems (Cp2ZrCl2 (C1), rac-EBIZrCl2 (C2), rac-SBIZrCl2 (C3), i-PrCpFluZrCl2 (C4), Me2Si(η5-C5Me4)(η1-N-tBu)TiCl2 (C5)) was investigated to prepare functionalized polyethylene with side-chain TAA groups. The metallocene/methylaluminoxane (MAO) catalytic systems (C1-C4) efficiently lead to the production of high-molecular-weight poly(ethylene-co-M1). While the C4/MAO catalytic system shows the highest comonomer response, the C5/MAO system exhibits the poor compatibility with the M1 comonomer. Copolymerization results of ethylene with M1-M3 using C4/MAO indicate that M1-M3 are well tolerated by both the cationic active species of C4 and MAO cocatalyst, giving rise to the copolymers with high levels of activity and molecular weight. Inspection of the aliphatic region of the 13C NMR spectra of the copolymers (P1-P3) having ca. 11 mol% of M1-M3, respectively, reveals the presence of isolated comonomer units with prevailing [EEMEE] monomer sequences in the polymer chain. UV-vis absorption and PL spectra exhibit an apparent low-energy band broadening for P1 and P2 indicative of intrachain aggregate formation. Whereas P2 and P3 undergo completely reversible one-electron oxidation process, P1 shows relatively poor oxidational stability.  相似文献   

16.
Kuan-Wei Lee 《Polymer》2007,48(13):3664-3672
A series of new liquid crystalline homopolymers (P1 and P2) and block copolymers (P3 and P4) composed of methacrylates containing pendant biphenyl-4-ylthiophene (M1) and biphenyl-4-ylfluorene (M2) units were synthesized by atom transfer radical polymerization (ATRP). The number-average molecular weights (Mn) of the homopolymer (P2) and diblock copolymers (P3 and P4) were in the range of 5153-8713 g mol−1 with polydispersity indices (PDIs) between 1.17 and 1.25. The thermal, mesogenic, and photoluminescence (PL) properties of all polymers were investigated. Except for the absence of mesogenic properties in block copolymer P4, polymers P1 and P3 possessed the smectic A phase and polymer P2 exhibited the nematic phase. Moreover, the mesomorphism and the layer d-spacing values of the smectic A phase in polymers P1 and P3 were confirmed and characterized by X-ray diffraction (XRD) patterns.  相似文献   

17.
Jinqing Qu  Toshio Masuda 《Polymer》2007,48(16):4628-4636
Novel chiral acetylene monomers bearing carbazole and triphenylamine groups, namely, (S)-3-butyn-2-yl 2-(9-carbazolyl)ethyl carbonate (1) and (S)-3-butyn-2-yl 4-(diphenylamino)benzoate (2) were synthesized, and polymerized with Rh+(nbd)[η6-C6H5B(C6H5)3] catalyst to give the corresponding polymers with moderate molecular weights (Mn 13.0 × 103 and 15.5 × 103) in good yields (86% and 88%). CD spectroscopic studies revealed that poly(1) and poly(2) took predominantly one-handed helical structure in CHCl3. The helical structures of poly(1) and poly(2) were very stable against heating and addition of MeOH. The solution of poly(1) and poly(2) emitted fluorescence in 0.52% and 7.2% quantum yields, which were lower than those of the corresponding monomers 1 and 2 (22.5% and 76.5%). The cyclic voltammograms of the polymers indicated that the oxidation potentials of the polymers were lower than those of the monomers. The polymers showed electrochromism and changed the color from pale yellow to pale blue by application of voltage, presumably caused by the formation of polaron at the carbazole and triphenylamine moieties. The onset temperatures of weight loss of poly(1) and poly(2) were 225 and 270 °C under air.  相似文献   

18.
The polymerization of a novel monomer p-(t-butyldimethylsiloxy)tolan (1) with TaCl5-n-Bu4Sn provided a high molecular weight polymer (poly(1)), whose Mw reached 4.0×106. The poly(1) membrane was prepared by the casting method, and converted into poly[(p-hydroxy)tolan] (poly(2)) with a mixture of trifluoroacetic acid/water. Whereas poly(1) dissolved in low polarity solvents such as toluene and chloroform, poly(2) was practically insoluble in any solvents, although it partly dissolved in methanol and ethanol. The onset weight loss temperatures of poly(1) and poly(2) in air were 320 and 360 °C, respectively, indicating fair thermal stability among substituted polyacetylenes. The oxygen permeability coefficients (PO2) of poly(1) was 150 barrers, which is relatively small among polytolan derivatives, while that of poly(2) was 8.0 barrers and smaller owing to the presence of polar hydroxyl groups.  相似文献   

19.
Chih-Cheng Lee 《Polymer》2008,49(19):4211-4217
A series of vinyl copolymers (P1-P6) containing pendant hole-transporting triphenylamine (11-88 mol%) and carbazole chromophores were synthesized by radical copolymerization to investigate the influence of triphenylamine groups upon optoelectronic properties. The copolymers were readily soluble in common organic solvents and their weight-average molecular weights (Mws) were between 1.41 × 104 and 2.24 × 104. They exhibited moderate thermal stability with Td = 402-432 °C at 5% weight loss. The emission spectra (both PL and EL) of the blends [P1-P6 with 4 wt% Ir(ppy)3] showed dominant green emission (517 nm) attributed to Ir(ppy)3 due to efficient energy transfer from P1-P6 to Ir(ppy)3. The HOMO levels of P1-P6, estimated from onset oxidation potentials in cyclic voltammeter, were −5.42 to −5.18 eV, which are much higher than −5.8 eV of conventional poly(9-vinylcarbazole) (PVK) host owing to high hole-affinity of the triphenylamine groups. The optoelectronic performances of phosphorescent EL devices, using P1-P6 as hosts and Ir(ppy)3 as dopant (ITO/PEDOT:PSS/P1-P6:Ir(ppy)3 (4 wt%):PBD (40 wt%)/BCP/Ca/Al), were greatly improved relative to that of PVK. The best performance was obtained with P4 device, in which the maximum luminance and luminance efficiency were 11?501 cd/m2 and 10.6 cd/A, respectively.  相似文献   

20.
C2-Symmetric 9,9′-spirobifluorene-containing polyesters (PEs) were synthesized by polycondensation of 2,2′-dihydroxy-9,9′-spirobifluorene (1) with bis(acyl chloride)s (2) at 230 °C in diphenylether. The molecular weights of PEs 3a-3f were sufficiently high (Mw 13,400-41,600). PEs displayed high thermal stability. The glass transition temperatures (Tg) estimated by differential scanning calorimetry analysis appeared in a range 177-352 °C depending on the spacer structure, while the 5% decomposition temperatures (Td5) measured by thermogravimetric analysis were over 416 °C both under nitrogen atmosphere and in air. PEs showed good solubility in typical organic solvents such as CHCl3 and THF easily to afford the tough, transparent, and flexible cast films. The transmittance of the polymer films reached over 90% in the wavelength range from ca. 410-900 nm. In addition, PEs exhibited higher refractive index rather than that of commercially available 9,9-diarylfluorene-containing PE, in addition to very low degree of birefringence presumably due to the C2-symmetric structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号