首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用溶胶凝胶法在58S生物玻璃的基础上用氧化锌取代3? mol%的氧化钙制备了含锌的生物玻璃粉体 (58S3Z),对合成的粉体采用有机泡沫浸渍法在700℃及1200℃制备出58S3Z-700℃、58S3Z-1200℃玻璃及玻璃陶瓷多孔支架。在所得支架表面涂覆PLGA及PBS薄膜制备出58S3Z-1200℃-PLGA及58S3Z-1200℃-PBS复合支架。对其形貌、 孔隙率、 力学性能、 体外降解性及细胞相容性进行了系统研究。复合后多孔支架仍然保持三维连通的多孔结构,孔隙率与复合前(86.9%±0.8% (58S3Z-700℃),80.1%±0.6% (58S3Z-1200℃))相比稍有下降,分别为75.9%±0.6% (58S3Z-1200℃-PLGA)和77.9%±0.9% (58S3Z-1200℃-PBS)。但复合多孔支架显示出较高的抗压强度,分别达到1509.4 kPa±162.8 kPa (PLGA) 和901.6 kPa±94.5 kPa (PBS),与玻璃和玻璃陶瓷支架 (258.4 kPa±23.6 kPa) 相比具有较大的提高。体外降解实验表明58S3Z-1200℃-PLGA、58S3Z-1200℃-PBS复合多孔支架可降解, 经过28天的浸泡其失重率分别达到13.3%和2.1%。体外研究结果表明:58S3Z玻璃陶瓷支架复合PBS或PLGA后支持成骨细胞黏附、铺展和生长。这种新型的复合支架具有三维的网状多孔结构,良好的力学性能、降解性和细胞相容性,有望成为一种较理想的骨组织工程支架。   相似文献   

2.
Porous calcium phosphate ceramics (mainly hydroxyapatite) with interconnected macropores (∼1 mm) and micropores (∼5 μm) as well as high porosities (∼80%) were prepared by firing polyurethane foams that were coated with calcium phosphate cement at 1200 °C. In order to improve the mechanical properties such as compressive strength and compressive modulus and maintain the desirable bioactivity (i.e. the ability of apatite layer formation), the open micropores of the struts were infiltrated with poly(lactic-co-glycolic acid) (PLGA) to achieve an interpenetrating bioactive ceramic/biodegradable polymer composite structure. The PLGA filled struts were further coated with a 58S bioactive glass (33 wt.%)–PLGA composite coating. The PLGA–bioactive glass modified porous calcium phosphate ceramics proved to be bioactive and exhibited compressive strengths up to 7.7 MPa and compressive moduli up to 3 GPa, which were comparable to those of natural spongy bones. The obtained complex porous bioactive/biodegradable composites could be used as tissue engineering scaffolds for low-load bearing applications.  相似文献   

3.
Bioresorbable and bioactive tissue engineering scaffolds based on bioactive glass (45S5 Bioglass®) particles and macroporous poly(DL-lactide) (PDLLA) foams were fabricated. A slurry dipping technique in conjunction with pretreatment in ethanol was used to achieve reproducible and well adhering bioactive glass coatings of uniform thickness on the internal and external surfaces of the foams. In vitro studies in simulated body fluid (SBF) demonstrated rapid hydroxyapatite (HA) formation on the surface of the composites, indicating their bioactivity. For comparison, composite foams containing Bioglass® particles as filler for the polymer matrix (in concentration of up to 40 wt %) were prepared by freeze-drying, enabling homogenous glass particle distribution in the polymer matrix. The formation of HA on the composite surfaces after immersion in phosphate buffer saline (PBS) was investigated to confirm the bioactivity of the composites. Human osteoblasts (HOBs) were seeded onto as-fabricated PDLLA foams and onto PDLLA foams coated with Bioglass® particles to determine early cell attachment and spreading. Cells were observed to attach and spread on all surfaces after the first 90 min in culture. The results of this study indicate that the fabricated composite materials have potential as scaffolds for guided bone regeneration.  相似文献   

4.
This research work aims to propose highly porous polymer/bioactive glass composites as potential scaffolds for hard-tissue and soft-tissue engineering. The scaffolds were prepared by impregnating an open-cells polyurethane sponge with melt-derived particles of a bioactive glass belonging to the SiO2–P2O5–CaO–MgO–Na2O–K2O system (CEL2). Both the starting materials and the composite scaffolds were investigated from a morphological and structural viewpoint by X-ray diffraction analysis and scanning electron microscopy. Tensile mechanical tests, carried out according to international ISO and ASTM standards, were performed by using properly tailored specimens. In vitro tests by soaking the scaffolds in simulated body fluid (SBF) were also carried out to assess the bioactivity of the porous composites. It was found that the composite scaffolds were highly bioactive as after 7 days of soaking in SBF a HA layer grew on their surface. The obtained polyurethane/CEL2 composite scaffolds are promising candidates for tissue engineering applications.  相似文献   

5.
Porous PLGA/PVA scaffolds as hydrophilized PLGA scaffolds for tissue engineering applications were fabricated by a novel melt-molding particulate leaching method (non-solvent method). The prepared scaffolds exhibited highly porous and open-cellular pore structures with almost same surface and interior porosities (pore size, 200–300 μ m; porosity, about 90%). The in vitro degradation behavior of the PLGA and PLGA/PVA scaffolds was compared at 37C in PBS (pH 7.4) with and without the solution change everyday to see the effect of solution pH as well as scaffold hydrophilicity on the degradation behavior. The changes in dimension, molecular weight, mechanical properties (maximum load and modulus), and morphology of the scaffolds were examined with degradation time. The degradation behavior of the PLGA and PLGA/PVA scaffolds was further investigated in vivousing a rat model (subcutaneously implantation). It was observed that both PLGA and PLGA/PVA scaffolds in decreasing pH condition (PBS no change) showed faster degradation than those in constant pH condition (PBS change everyday), owing to the enhanced intramolecular depolymerization by the increment of chain hydrophilicity caused by carboxylate groups as well as the autocatalysis of carboxylic acids accumulated in the solution by the cleavage of PLGA backbone ester bonds. The scaffolds in vivo condition also showed faster degradation than those in vitro, probably due to the aid of foreign body giant cells or enzymes. The PLGA/PVA scaffold showed slightly faster degradation than the PLGA scaffold for both in vitro and in vivo conditions. Author to whom all correspondence should be addressed.  相似文献   

6.
Porous scaffolds that can prolong the release of bioactive factors are urgently required in bone tissue engineering. In this study, PLGA/gelatin composite microspheres (PGMs) were carefully designed and prepared by entrapping poly(l-lactide-co-glycolide) (PLGA) microspheres (PMs) in gelatin matrix. By mixing PGMs with PLGA solution directly, drug-loaded PLGA/carbonated hydroxyapatite (HAp)/PGMs composite scaffolds were successfully fabricated. In vitro release of fluorescein isothiocyanate-dextran (FD70S) as a model drug from the scaffolds as well as PMs and PGMs was studied by immersing samples in phosphate buffered saline (pH = 7.4) at 37°C for 32 days. Compared with PMs, PGMs and PLGA/HAp/PGMs scaffolds exhibited slow and steady release behavior with constant release rate and insignificantly original burst release. The swelling of PGMs, diffusion of drugs, and degradation of polymer dominated the release behaviors synergistically. The PLGA/HAp/PGMs scaffold offers a novel option for sequential or simultaneous release of several drugs in terms of bone regeneration.  相似文献   

7.
A systematic and extensive approach incorporating in vitro and in vivo experimentation to treat chronic osteomyelitis in animal model were made using antibiotic loaded special bioactive glass porous scaffolds. After thorough characterization for porosity, distribution, surface charge, a novel drug composite were infiltrated by using vacuum infiltration and freeze-drying method which was subsequently analyzed by SEM-EDAX and studied for in vitro drug elution in PBS and SBF. Osteomyelitis in rabbit was induced by inoculation of Staphylococcus aureus and optimum drug-scaffold were checked for its efficacy over control and parenteral treated animals in terms of histopathology, radiology, in vivo drug concentration in bone and serum and implant-bone interface by SEM. It was optimized that 60P samples with 60-65% porosity (bimodal distribution of macro- to micropore) with average pore size ~60 μm and higher interconnectivity, moderately high antibiotic adsorption efficiency (~49%) was ideal. Results after 42 days showed antibiotic released higher than MIC against S. aureus compared to parenteral treatment (2 injections a day for 6 weeks). In vivo drug pharmacokinetics and SEM on bone-defect interface proved superiority of CFS loaded porous bioactive glass implants over parenteral group based on infection eradication and new bone formation.  相似文献   

8.
Poly(l-lactide-co-glycolide) (PLGA) was synthesized using a biocompatible initiator, zirconium acetylacetonate. In vitro and in vivo degradation properties of PLGA films (produced by solvent casting, 180 μm thick) and PLGA scaffolds (produced by an innovated solvent casting and particulate leaching, 3 mm thick) were evaluated. The samples were either submitted for degradation in phosphate buffered saline (PBS) at 37 °C for 30 weeks, or implanted into rat skeletal muscles for 1, 4, 12, 22 and 30 weeks. The degradation was monitored by scanning electron microscopy, atomic force microscopy, weight loss, and molecular weight changes (in vitro), and by microscopic observations of the materials’ morphology after histological staining with May-Grunwald-Giemsa (in vivo). The results show that the films in both conditions degraded much faster than the scaffolds. The scaffolds were dimensionally stable for 23 weeks, while the films lost their integrity after 7 weeks in vitro. The films’ degradation was heterogenous—degradation in their central parts was faster than in the surface and subsurface regions due to the increased concentration of the acidic degradation products inside. In the scaffolds, having much thinner pore walls, heterogenous degradation due to the autocatalytic effect was not observed.  相似文献   

9.
王德平  黄文旵  周萘  姚爱华  宁佳  刘欣 《功能材料》2007,38(2):302-304,307
以硼硅酸盐玻璃粉为原料,采用有机泡沫浸渍工艺,制备了高孔隙率的网眼多孔支架.应用XRD、SEM及ICP-AES等对硼酸盐生物玻璃粉末在生理模拟液中的降解性能、生物活性等进行了测试分析.结果表明,硼硅酸盐生物玻璃的降解性和生物活性与材料的组成配比有关,因此,可以通过调整玻璃的组成有效控制材料的降解性和表面形成的羟基磷灰石晶体的形态.硼硅酸盐生物活性玻璃作为硬组织工程支架材料的研究具有重要的意义和广泛的应用前景.  相似文献   

10.
Investigation of novel biomaterials for bone engineering is based on the development of porous scaffolds, which should match the properties of the tissue that is to be replaced. These materials need to be biocompatible, ideally osteoinductive, osteoconductive, and mechanically well-matched. In the present paper, we report the preparation and characterization of hybrid macroporous scaffold of polyvinyl alcohol (PVA)/bioactive glass through the sol–gel route. Hybrids containing PVA (80, 70 and 60 wt%) and bioactive glass with composition 58SiO2–33CaO–9P2O5 were synthesized by foaming a mixture of polymer solution and bioactive glass via sol–gel precursor solution. PVA with two different degree of hydrolysis (DH), 98.5% (high degree) and 80% (low degree) were also investigated, in order to evaluate the influence of residual acetate group present in polymer chain on the final structure and properties of 3D porous composite produced. The microstructure, morphology and crystallinity of the hybrid porous scaffolds were characterized by X-ray diffraction (XRD), Infrared Fourier Transform spectrometry (FTIR) and Scanning electron microscopy (SEM/EDX) analysis. In addition, specific surface area was assessed by B.E.T. nitrogen adsorption method and mechanical behavior was evaluated by compression tests. Preliminary cytotoxicity and cell viability were also performed by the MTT assay. VERO cell monolayers were grown in 96-well microtiter plates. The results have clearly showed that hybrid foams of polyvinyl alcohol/bioactive glass (PVA/BG) with interconnected macroporous 3D structure were successfully produced. All the tested hybrids of PVA/BG have showed adequate cell viability properties for potential biological applications.  相似文献   

11.
用冷冻干燥法制备了不同比例的纳米羟基磷灰石/壳聚糖-羧甲基纤维素(n-HA/CS-CMC)无机/有机复合多孔支架材料, 并探讨了其复合机理及无机组分n-HA对复合支架的结构形貌、力学性能、体外降解性能的影响. 结果表明, 其复合支架主要是通过无机组分n-HA均匀分散充填在CS-CMC聚电解质有机网络结构中形成的, 且三组分间有较强的化学键合. 无机组分n-HA的加入使孔结构变得不规则, 孔隙率略有减小, 使复合支架的抗压缩强度提高, 并且可使其体外降解速度减慢. 无机组分n-HA含量为40\%复合支架材料的性能最佳, 有望用作骨组织工程支架材料.  相似文献   

12.
For tissue regeneration and tissue engineering applications, a number of bioactive and biodegradable composites, either porous or non-porous, were fabricated. The newly developed materials included tricalcium phosphate reinforced polyhydroxybutyrate and its copolymer, poorly crystallized hydroxyapatite reinforced chitin, and plasma sprayed hydroxyapatite reinforced poly(L-lactic acid). It was shown that these new materials could be successfully produced using the manufacturing techniques adopted. In vitro experiments revealed that the incorporation of bioceramic particles in biodegradable polymers rendered the composites bioactive and significantly improved the ability of composites to induce the formation of bone-like apatite on their surfaces. Degradation of composite scaffolds in simulated body fluid was observed and could be due to the simultaneous degradation of polymer matrix and dissolution of bioceramic particles.  相似文献   

13.
Poly(DL-lactide) (PDLLA) foams and bioactive glass (Bioglass®) particles were used to form bioresorbable and bioactive composite scaffolds for applications in bone tissue engineering. A thermally induced phase separation process was applied to prepare highly porous PDLLA foams filled with 10 wt % Bioglass® particles. Stable and homogeneous layers of Bioglass® particles on the surface of the PDLLA/Bioglass® composite foams as well as infiltration of Bioglass® particles throughout the porous network were achieved using a slurry-dipping technique. The quality of the bioactive glass coatings was reproducible in terms of thickness and microstructure. In vitro studies in simulated body fluid (SBF) were performed to study the formation of hydroxyapatite (HA) on the surface of the PDLLA/Bioglass® composites, as an indication of the bioactivity of the materials. Formation of the HA layer after immersion in SBF was confirmed by X-ray diffraction and Raman spectroscopy measurements. The rate of HA formation in Bioglass®-coated samples was higher than that observed in non-coated samples. SEM analysis showed that the HA layer thickness rapidly increased with increasing time in SBF in the Bioglass®-coated samples. The high bioactivity of the developed composites suggests that the materials are attractive for use as bioactive, resorbable scaffolds in bone tissue engineering.  相似文献   

14.
Bioactive glass has been investigated for variety of tissue engineering applications. In this study, fabrication, in vitro and in vivo evaluation of bioactive glass nanocomposite scaffold were investigated. The nanocomposite scaffolds with compositions based on gelatin and bioactive glass nanoparticles were prepared. The apatite formation at the surface of the nanocomposite samples confirmed by Fourier transform infrared spectroscopy, scanning electron microscopy and X-ray powder diffraction analyses. The in vitro characteristics of bioactive glass scaffold as well as the in vivo bone formation capacity of the bioactive glass scaffold in rabbit ulnar model were investigated. The bioactive glass scaffold showed no cytotoxicity effects in vitro. The nanocomposite scaffold made from gelatin and bioactive glass nanoparticles could be deliberated as an extremely bioactive and prospective bone tissue engineering implant. Bioactive glass scaffolds were capable of guiding bone formation in a rabbit ulnar critical-sized-defect model. Radiographic evaluation indicated that successful bridging of the critical-sized defect on the sides both next to and away from the radius took place using bioactive glass scaffolds. X-ray analysis also proposed that bioactive glass scaffolds supported normal bone formation via intramembranous formation  相似文献   

15.
Poly (lactic-co-glycolic acid) (PLGA) is a biodegradable polymer used to make resorbable sutures, and is also used in other applications in tissue engineering. Being an artificial polymer, its degradation rate can be tailored to suit its application. It can be easily moulded into structures with suitable mechanical strength and degrades into relatively harmless products in the body. Its adjustable degradation rate also makes it a potentially excellent controlled release delivery device. However, the functionalization of PLGA with bioactive molecules usually requires extensive chemical modification. Chemical modification may compromise the mechanical strength of PLGA and inactivate the bioactive molecules. In this paper, a study is done to investigate the coating of an angiogenic factor on unmodified PLGA suture substrates for the differentiation of human mesenchymal stem cells (hMSC) into endothelial cells (EC). The results show that the method used to anchor vascular endothelial growth factor (VEGF) onto the PLGA surface can enable the gradual release of VEGF from the substrate into solution to induce the differentiation of hMSCs into ECs. Thus, this method can potentially be used to coat PLGA materials like sutures, meshes and scaffolds, rendering them functional as effective controlled release delivery devices for a wide range of bioactive molecules.  相似文献   

16.
The cortical bone response towards poly(lactide-co-glycolide) (70/30) (PLGA) (70/30)/apatite complex scaffolds with different levels of crystallinity was investigated. Apatite with different levels of crystallinity, Ca-deficient hydroxyapatite (CDHA), which has a low crystallinity, and a mixture of carbonated hydroxyapatite (CHA) and CDHA, which has a higher crystallinity, were prepared from an aqueous mixture of Ca-EDTA complex, H2O2, H3PO4, and NH4OH. Two porous PLGA(70/30)/apatite composite scaffolds, composite scaffold A (containing low crystallinity CDHA) and composite scaffold B (containing the higher crystallinity CHA/CDHA mixture), were prepared. Afterwards, pure porous PLGA and the two composite scaffolds were implanted into the cortical bone of rabbit tibiae for 12 weeks. High-resolution microfocus X-ray computed tomography and histological examinations revealed a better bone response for composite scaffold A compared with PLGA and composite scaffold B. For composite scaffold A, the original bone defect was almost filled with new bone. Quantitative analysis revealed that composite scaffold A produced a significantly greater amount of new bone. The present study demonstrated that the level of apatite crystallinity influences bone response. A PLGA/apatite porous composite with a low level of apatite crystallinity shows promise as a bone substitute or scaffold material for bone tissue engineering.  相似文献   

17.
Poly-lactic-glycolic acid (PLGA) has been widely used as a scaffold material for bone tissue engineering applications. 3D sponge-like porous scaffolds have previously been generated through a solvent casting and salt leaching technique. In this study, polymer–ceramic composite scaffolds were created by immersing PLGA scaffolds in simulated body fluid, leading to the formation of a hydroxyapatite (HAP) coating. The presence of a HAP layer was confirmed using scanning electron microscopy, energy dispersive X-ray spectroscopy and Fourier transform infrared spectroscopy in attenuated total reflection mode. HAP-coated PLGA scaffolds were tested for their biocompatibility in vitro using human osteoblast cell cultures. Biocompatibility was assessed by standard tests for cell proliferation (MTT, WST), as well as fluorescence microscopy after standard cell vitality staining procedures. It was shown that PLGA–HAP composites support osteoblast growth and vitality, paving the way for applications as bone tissue engineering scaffolds.  相似文献   

18.
Combining commercially available Polyglactin 910 (Vicryl®) sutures with bioactive glass powder offers new possibilities for application of composite materials in tissue engineering. Commercial bioactive glass (45S5 Bioglass®) powder was used to coat Vicryl® sutures and the tensile strength of the sutures was tested before and after immersion in simulated body fluid (SBF) as a means to assess the effect of the bioactive glass coating on suture degradation. Different gauge lengths (126.6 and 111.6 mm) and strain rates (2.54, 11.4 and 25.4 mm/min) were tested. The tensile strength of composite sutures was slightly lower than that of as-received Vicryl® sutures (404 MPa versus 463 MPa). However after 28 days immersion in SBF the residual tensile strength of the coated sutures was significantly higher, indicating a protective function of the Bioglass® coating. The tensile strength results were similar for the different gauge lengths and strain rates investigated. A qualitative explanation for the effect of bioactive glass coating on polymer degradation is offered.  相似文献   

19.
Borate bioactive glass-based composites have been attracting interest recently as an osteoconductive carrier material for local antibiotic delivery. In the present study, composites composed of borate bioactive glass particles bonded with a chitosan matrix were prepared and evaluated in vitro as a carrier for gentamicin sulfate. The bioactivity, degradation, drug release profile, and compressive strength of the composite carrier system were studied as a function of immersion time in phosphate-buffered saline at 37 °C. The cytocompatibility of the gentamicin sulfate-loaded composite carrier was evaluated using assays of cell proliferation and alkaline phosphatase activity of osteogenic MC3T3-E1 cells. Sustained release of gentamicin sulfate occurred over ~28 days in PBS, while the bioactive glass converted continuously to hydroxyapatite. The compressive strength of the composite loaded with gentamicin sulfate decreased from the as-fabricated value of 24 ± 3 MPa to ~8 MPa after immersion for 14 days in PBS. Extracts of the soluble ionic products of the borate glass/chitosan composites enhanced the proliferation and alkaline phosphatase activity of MC3T3-E1 cells. These results indicate that the gentamicin sulfate-loaded composite composed of chitosan-bonded borate bioactive glass particles could be useful clinically as an osteoconductive carrier material for treating bone infection.  相似文献   

20.
To develop a novel degradable poly (L-lactic acid)/β-tricalcium phosphate (PLLA/β-TCP) bioactive materials for bone tissueengineering, β-TCP powder was produced by a new wet process. Porous scaffolds were prepared by three steps, i.e. solventcasting, compression molding and leaching stage. Factors influencing the compressive strength and the degradation behaviorof the porous scaffold, e.g. weight fraction of pore forming agent-sodium chloride (NaCl), weight ratio of PLLA: β-TCP,the particle size of β-TCP and the porosity, were discussed in details. Rat marrow stromal cells (RMSC) were incorporatedinto the composite by tissue engineering approach. Biological and osteogenesis potential of the composite scaffold weredetermined with MTT assay, alkaline phosphatase (ALP) activity and bone osteocalcin (OCN) content evaluation. Resultsshow that PLLA/β-TCP bioactive porous scaffold has good mechanical and pore structure with adjustable compressive strengthneeded for surgery. RMSCs seeding on porous PLLA/  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号