首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 218 毫秒
1.
针对金川集团股份有限公司亚硫酸钠脱硫废水处理高酸含砷溶液进行了相关的研究。亚硫酸钠脱硫废水,含有约40%的硫代硫酸钠,将其作为处理高酸含砷溶液的沉砷剂,研究了相关的工艺技术条件。根据实验结果确定了最佳工艺条件。工程应用证明该法效果明显,成本低廉,安全可靠。  相似文献   

2.
摘要:砷是铜冶炼原料中的一种有害元素,砷的化合物存在于不同的冶炼产物中,并且砷的氧化物易挥发,对环境和人体健康危害较大。掌握铜艾萨法冶炼过程中砷分布以及回收工艺是实现砷无害化的关键。通过对艾萨法铜冶工艺中砷元素在投入和产出物料中的占比进行平衡计算。结果表明,其进入到烟尘和硫酸系统中的砷分别占总投入砷量的76.86%和5.54%;结合砷在艾萨法冶炼过程分布特点,介绍了近些年来从含砷烟尘和污酸中处理脱出收砷的一些工艺方法,主要包括火法工艺、湿法工艺、火法-湿法联合工艺及生物法处理工艺。在此基础上,针对未来含砷烟尘和污酸废水提出了真空还原预热脱砷、低温硫化深度脱砷,污酸废水脱砷溶液结合生物法进行进一步的脱砷的新思路。  相似文献   

3.
两段石灰中和-洗涤-絮凝沉淀法脱除污酸中砷的研究   总被引:1,自引:0,他引:1  
应国民  阴树标  陈雯  李庆超 《矿冶》2017,26(2):71-76
以高砷铜冶炼污酸废水为原料,采用两段石灰中和-洗涤-絮凝沉淀法处理,研究了该工艺除砷原理、影响因素、及效果,讨论了不同终了pH时溶液及渣中砷含量变化情况,洗涤对渣中砷含量变化的影响和絮凝剂PFSS对溶液深度除砷效果的影响。结果表明:一段中和后溶液中砷含量由13.69g/L降到12.90g/L,除砷率仅为5.77%,渣中砷含量为2.80%。用蒸馏水洗涤一段中和渣,液固比为10:1,洗涤5次后,渣中砷含量降至0.06%;用0.1mol/L的Na2CO3溶液洗涤一段中和渣,液固比为10:1,洗涤4次后,渣中砷含量降至0.05%。两者均可使中和渣由固体危废变为普通固废,减少危废排放量25%以上。当溶液pH中和到12.04时,砷的残留量仅为3.6mg/L,除砷率达99.97%,PFSS的滴加可使溶液中砷含量低于0.5mg/L,甚至低于0.01mg/L,出水砷含量满足排放标准。  相似文献   

4.
洗涤冶炼烟气产生的含砷酸性废水的利用及处理   总被引:3,自引:0,他引:3  
以洗涤冶炼烟气含砷酸性废水为原料,采用CaO和NaOH分段中和后加入硫酸铜制备得到亚砷酸铜.一段中和时每升废水加入氧化钙16g,二段中和时加入氢氧化钠调节废水pH值为6.0,中和后废水中Pb、Cu、Fe、Mg杂质去除率达到90%以上,砷损失率约为7%.按照铜砷物质的量之比2:1,在中和后废水中加入硫酸铜,采用氢氧化钠溶液调节溶液pH值为8,经过过滤、洗涤、干燥得到亚砷酸铜,其砷转化率达到98.2%.制备亚砷酸铜后的废水采用石灰-聚合硫酸铁絮凝处理,当石灰调节废水pH值为9.0、铁砷物质的量之比为8:1时,处理后废水中砷含量为0.30 mg/L,达到了国家废水排放标准(GB 8978-1996).  相似文献   

5.
针对锌冶炼系统产生的污酸成分复杂、酸度高,砷及重金属浓度高的特点,利用湿法炼锌过程中产生的含有大量有价金属的回转窑渣对其进行处理。提出了"污酸浸出锌窑渣—常压臭葱石合成法沉砷—铁粉置换沉淀铜、砷—中和水解—赤铁矿法沉铁"的主体工艺,在实现污酸无害化处理的同时有效利用窑渣中的有价金属资源。结果表明,经二段逆流浸出后,铜、铁、锌的浸出率均在90%以上,砷的沉淀率高于95%,沉砷渣为晶型良好的臭葱石。溶液中铜的沉淀率超过99%,实验得到的赤铁矿渣含铁量达64.42%,可作为炼铁或制作铁红的原料。  相似文献   

6.
针对锌冶炼系统产生的污酸成分复杂、酸度高,砷及重金属浓度高的特点,利用湿法炼锌过程中产生的含有大量有价金属的回转窑渣对其进行处理。提出了“污酸浸出锌窑渣-常压合成臭葱石法沉砷-铁粉置换沉淀铜、砷-中和水解-赤铁矿法沉铁”的主体工艺路线,在实现污酸无害化处理的同时有效利用窑渣中的有价金?属资源。结果表明:经二段逆流浸出后下铜、铁、锌的浸出率均在90%以上,砷的沉淀率高于95%,沉砷渣为晶型良好的臭葱石。溶液中的铜沉淀率超过99%,实验得到的赤铁矿渣含铁量达64.42%,可作为炼铁或制作铁红的原料。  相似文献   

7.
采用Lix 984N对含杂质锌、砷、铁、锑的硫酸铜溶液进行了铜萃取分离和锌回收研究,解决了含多种杂质的硫酸铜溶液传统沉淀法存在的净化分离困难问题。研究结果表明,铜萃取分离采用3级萃取、1级洗涤和2级反萃,可得到锌、砷、铁、锑含量均低于2 mg/L的符合电积要求的硫酸铜溶液。萃余液采用Ca CO3预中和除去大部分砷、铁、锑,再用Na2CO3沉锌,得到含锌大于40%的高锌渣。  相似文献   

8.
黄铁矿制酸烧渣含金、银、铜、铅和锌等有价金属,通过焙烧深度脱硫,焙砂细磨,氯化浸出,回收其中的金、银、铜、铅和锌.确定最佳焙烧时间和温度,浸出时间、温度、液固比、氯离子浓度、磨矿粒度等,并进行浸出渣再浸,以及浸出液多方案回收金银等的研究.结果表明,氯化浸出金属回收率高,废水经处理后能达标排放.  相似文献   

9.
国外某难处理高砷金铜矿选冶试验研究   总被引:1,自引:0,他引:1       下载免费PDF全文
介绍了采用优先选铜—硫砷精矿强化浸金—尾矿氰化工艺方案综合回收了国外某矿石中的金和铜。该矿原矿石含Au3.40g/t、Ag16.9g/t、Cu1.07%、As1.16%、TS5.38%,金、铜矿物嵌布粒度微细,嵌布关系复杂,金分布较为分散,且有很大一部分被硫化物或脉石包裹,砷含量高,属于复杂难处理高砷金铜矿。试验采用石灰+亚硫酸钠组合抑制剂抑砷,优先获得了可以直接销售的合格铜金精矿,采用热压预氧化—氰化法回收硫砷精矿中的金,氰化浸出浮选尾矿中的金,金、铜综合回收率分别达到83.47%和87.20%。  相似文献   

10.
含砷碱废水的无害化治理   总被引:2,自引:1,他引:2  
针对含砷碱废水 ,采用石灰苛化、硫酸溶解、亚硫酸还原、中温煅烧酸不溶渣的工艺 ,取得了碱再生、砷产品化及含砷石膏无害化处理的结果 ,为含砷碱废水无害化治理提供了一条新的途径  相似文献   

11.
针对含贵金属热滤渣物料的物相及元素组成, 提出了氧化焙烧脱硫-硫酸选择性浸出贱金属铜和镍富集贵金属工艺, 讨论了物料粒度、焙烧时间、焙烧温度、硫酸浓度、浸出时间、浸出温度等因素对贵金属富集比的影响。获得最佳工艺参数为: 热滤渣粒度0.080~0.106 mm, 焙烧时间6 h, 焙烧温度700 ℃, 硫酸浓度45%, 浸出时间5 h, 浸出温度95 ℃。在此条件下, 脱硫率达到98.89%, 铜、镍浸出率分别为98.33%和98.12%, 硫酸浸出渣中Au含量1 198.60 g/t, Ag含量1 807.79 g/t, Pt含量1 801.27 g/t, Pd含量1 937.66 g/t。从原料到硫酸浸出渣, 贵金属富集比达到14.19倍。该工艺流程操作简单、富集比高、回收率高、成本低, 可为从热渣中富集贵金属提供借鉴作用。  相似文献   

12.
采用砷碱渣代替碳酸钠与高砷锑烟尘进行协同脱砷并回收其中的有价金属。将碳酸钠、低砷碱渣、高砷碱渣分别与高砷锑烟尘按一定比例混合,通过焙烧-浸出-过滤工艺得到含砷浸出液和有价金属富集渣。结果表明,当原料配比分别为m碳酸钠∶m高砷锑烟尘=0.8、m低砷碱渣∶m高砷锑烟尘=3.0、m高砷碱渣∶m高砷锑烟尘=1.0时,砷浸出率分别为97.5%、96.9%、99.2%; 铅、锑浸出损失少而富集于浸出渣中,渣中有价金属总含量大于68.7%,且浸出渣中砷含量小于1.0%。该工艺砷脱除率高、有价金属回收率高,证明将堆存的砷碱渣直接用作脱砷剂,可以实现以废治废、资源回收,有效降低脱砷成本。  相似文献   

13.
为了实现锑冶炼砷碱渣的清洁利用及无害化处置,设计了球磨浸出—重选收锑—废碱喷淋—氧化沉砷—砷稳定固化的砷碱渣清洁利用新工艺。结果表明:常温下液固比为4:1时,砷碱渣经球磨后水浸,球磨和浸出时间分别20 min和40 min,As浸出率为96.78%,碱浸出率为97.35%,实现Sb、As和碱高效分离;为提取回收浸出渣中锑资源,通过摇床高效富集回收Sb,回收率为40%~50%,且精矿中As < 1%,Sb≥10%,可通过冶炼系统回收;基于酸碱中和原理,浸出液(高砷废碱)进入锑冶炼中烟气脱硫喷淋系统与烟气中SO2发生反应,烟气中SO2和As含量达到排放标准,实现浸出碱液和烟气SO2协同治理目的;向高砷废水加入H2O2对砷进行氧化,再加入脱砷剂(生物制剂)与砷发生沉淀反应而脱除,经两段脱砷后,废水中As含量降低至150 mg/m3, 脱砷效率分别为88.4%和92.5%;产生的脱砷渣采用铁盐稳定剂处理,在添加质量比为9%时固化体As毒性浸出浓度从348.67 mg/L降至0.65 mg/L,达到危险废物填埋场入场标准。工业扩大试验结果表明,新工艺可达到以废治废、清洁利用砷碱渣目的。   相似文献   

14.
铜冶炼烟尘的综合利用   总被引:1,自引:0,他引:1  
牛建军 《矿冶工程》2022,42(3):118-120
以铜转炉烟尘为原料, 采用高压酸浸工艺回收有价金属和脱除砷。结果表明, 在硫酸浓度4 mol/L、浸出温度100 ℃、浸出时间2 h条件下, 烟尘中砷、铁和铜浸出率分别为94.14%、93.80%、91.80%, 浸出渣主要物相为硫酸铅(PbSO4);通过氧压沉砷处理浸出液, 使溶液中铁和砷形成臭葱石(FeAsO4·2H2O)而固化;沉砷后液主要物质为Cu2+和SO42-, 可用于电解回收铜。该工艺可以实现铜烟尘中有价金属的综合回收, 同时将砷以臭葱石形式固化, 减少对环境的污染。  相似文献   

15.
阜康镍冶炼厂含镍铜渣冶炼工艺研究   总被引:1,自引:0,他引:1  
李晔 《矿冶》2000,9(3):59-62,38
采用焙烧—浸出—电积工艺处理阜康镍冶炼厂含镍铜渣。在焙烧温度 80 0~90 0℃、浸出温度 6 5~ 70℃、浸出时间 12 0min的条件下 ,可得到铜浸出率为 97%。由于浸出液含铁极低、含镍低于 1g/L ,不需净化可直接电积。工业生产中可抽取一定量的铜电积老液送镍冶炼系统 ,防止铁、镍累积。含镍铜渣中的贵金属全部进入浸出渣 ,浸出渣率很低有利于贵金属富集。该工艺流程结构简单 ,金属回收率高 ,含镍铜渣中有价金属可综合回收 ,无环境污染  相似文献   

16.
对某含较多单质硫及铜、镍、铁等金属硫化物的浮选精矿进行了脱硫实验研究。考察了氢氧化钠直接浸出和氢氧化钠氧压浸出脱硫工艺及工艺条件。实验结果表明, 当液固比4∶1、温度90 ℃、碱浓度2 mol/L、保温时间1 h时, 氢氧化钠直接浸出脱硫, 脱硫率仅为18%左右;氢氧化钠氧压浸出时, 当液固比为3∶1、碱浓度2 mol/L、搅拌速度400 r/min、150 ℃下保温2 h后通入氧气, 保持氧分压为0.7 MPa, 继续反应3 h得到氧压浸出渣脱硫率为48.78%。  相似文献   

17.
张彤  公旭中  赵立新  王志 《矿冶》2021,30(3):97-102
电解精炼铜过程中,粗铜中的砷不可避免地溶解到电解液中,进而影响精炼铜效率.由于铜精炼电解液是酸性体系,常用的萃取法和化学沉淀法很难在该环境中取得理想效果.现有电解精炼厂大多选用电沉积法,以牺牲电耗的方式降低电解液中的砷浓度,然而这种方式能耗大、沉积效率低.通过模拟现有电沉积脱砷工艺,发现当铜电解精炼液中铜浓度降至10 ...  相似文献   

18.
以砷铜烧渣为原料,用SNO助剂处理2h~3h后在选择条件下进行氰化浸出,以回收有价金属元素金,可使浇渣中的金品位从6.5g/T下降至0.5g/T以下,有较好的经浊效益.  相似文献   

19.
以某低品位钴银矿浮选精矿为原料,在湿法提取冶金过程中先将砷固留在焙砂中,然后采用适宜的脱砷剂将其从浸出液中除去。用硫化法净化浸出液中的重金属离子,用萃取法分离镍、钴,最后用合格的含钴溶液帛取草酸钴产品。而银存留于浸出渣中待回收。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号