首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 65 毫秒
1.
纯聚氨酯弹性体(PUE)的耐极性溶剂和耐热性较差,限制了其在某些领域的应用,用纳米无机粒子对其进行改性是提高其性能的一种有效措施。介绍了机械混合法、原位聚合法、插层聚合法几种常用的聚氨酯纳米改性方法及其研究进展。  相似文献   

2.
介绍了用无机纳米粒子改性聚氨酯弹性体的制备方法,综述了纳米Si O2、纳米Zn O、纳米蒙脱土、纳米Ca CO3、纳米Ti O2、碳纳米管以及其他无机纳米粒子改性聚氨酯弹性体的研究进展,指出了无机纳米粒子改性聚氨酯弹性体目前存在的问题。  相似文献   

3.
用聚氨酯(PU)弹性体/纳米SiO2复合材料协同改性聚氯乙烯(PVC),用反应挤出一步法成型工艺制备了PU弹性体/纳米SiO2/PVC复合材料,对挤出速率和温度进行了考察,并对复合材料力学性能的影响因素进行了研究。结果表明,制备该复合材料的最佳工艺条件是螺杆转速为40~50r/min、挤出机均化段温度为180~190℃;用分散于液化二异氰酸酯中的纳米SiO2制备的复合材料的性能优于用分散于聚醚二元醇中的纳米SiO2;PU弹性体和纳米SiO2能协同增韧PVC,两者质量比为5/1时增韧改性的效果最佳。当PU弹性体/纳米SiO2/PVC(质量比)为5/1/20时,复合材料的综合力学性能最优,冲击强度达到45.6kJ/m2,拉伸强度为50.3MPa。  相似文献   

4.
聚氨酯弹性体/纳米二氧化硅改性聚氯乙烯材料的研制   总被引:1,自引:0,他引:1  
王士财  张晓东  楼涛  佘希林  李志国 《弹性体》2009,19(5):37-40,64
在考察了聚氨酯弹性体/纳米二氧化硅/聚氯乙烯(PU/nano-SiO2/PVC)反应挤出工艺的基础上,采用反应挤出一步法制备了PU弹性体/nano-SiO2改性的PVC材料,并对其力学性能进行了实验研究。结果表明,PU/nano-SiO2的质量比为5∶1时,增韧改性效果最佳,PU弹性体和nano-SiO2能协同增韧PVC,且nano-SiO2具有补强作用,当PU/nano-SiO2/PVC质量比为5∶1∶20时,改性材料的综合性能最优,此时样品材料的冲击强度达到45.6kJ/m2,拉伸强度为50.3MPa。  相似文献   

5.
聚氨酯弹性体的改性研究   总被引:4,自引:0,他引:4  
采用不同混炼温度,改性剂用量及纤维增强材料对国产TPU弹性全的改性进行研究。试验表明:用改性剂A-8910与TPU共混,可提高TPU的综合性能,其复合胶带的主要性能指标已达到目前日本进口胶带的水平。  相似文献   

6.
介绍了纳米改性聚氨酯弹性体(PUE)及其制备方法,并对纳米CaCO3、纳米蒙脱土、纳米SiO2、纳米TiO2、碳纳米管和其它纳米粒子改性PUE的研究发展情况进行了详细叙述.  相似文献   

7.
热塑性聚氨酯弹性体/氢氧化铝纳米复合材料制备与性能   总被引:1,自引:0,他引:1  
本研究以TPU为基体,纳米ATH作为主要改性剂,采用溶液-凝胶法制备ATH/聚醚分散体系,原位聚合法制备TPU/ATH纳米复合材料。研究结果表明:纳米粒子的添加量对预聚物的粘度及后续实验过程影响较大,因此纳米粒子的添加量不宜过高,实验选用的最大添加量为5%(质量分数);纳米ATH的添加可使TPU的力学性能有明显的提高,在ATH质量分数为4%时,拉伸强度增幅为60%,而断裂伸长率随着纳米ATH添加量的增加,存在极大值现象,在ATH质量分数为3%时,断裂伸长率达到最大值645%。  相似文献   

8.
将预分散的纳米氢氧化镁[Mg(OH)2]加入聚氨酯弹性体(PUE)反应体系进行原位聚合。由于预聚物粘度的影响,纳米粒子的最大添加量为5%(质量分数)。力学测试表明,所得Mg(OH)2/聚氨酯弹性体纳米复合材料的力学性能较纯PU有较大提高。复合材料置于60℃的水中3周后,拉伸强度保留93%。XRD测试显示复合材料中无明显结晶。氧指数(IO)测定显示,纳米Mg(OH)2的加入,可明显提高复合材料的难燃性能、当其质量分数为5%时,氧指数可达31。  相似文献   

9.
以聚醚多元醇和4,4'–二苯基甲烷二异氰酸酯(MDI)为主要原料制备聚氨酯预聚体,然后用苯胺甲基三乙氧基硅烷(ND–42)改性聚氨酯预聚体,制备出有机硅改性聚氨酯弹性体材料。考察了聚醚多元醇、扩链剂、R值、反应温度、反应时间、催化剂对反应的影响。  相似文献   

10.
研究了石墨填料对聚氨酯弹性体(PUE)性能的影响。结果表明,石墨颗粒在PUE基体中分布均匀,不影响其微相分离特征,并可提高材料的软化温度;当石墨加入量小于30%时,PUE材料硬度基本不受石墨添加量的影响;石墨质量分数为10%时,复合材料的强度出现峰值;添加石墨颗粒可以显著改变复合材料的力学性能。  相似文献   

11.
环氧硅油改性聚氨酯弹性体的制备与表征   总被引:1,自引:0,他引:1  
以2,4-甲苯二异氰酸酯(TDI)、聚氧化丙烯醚二醇(PPG-1000)为主要原料,以环氧硅油为改性剂,以3,3'-二氯-4,4'-二氨基二苯甲烷(MOCA)为扩链剂,制备了一系列硅油改性聚氨酯弹性体(PUE),并对试样进行了红外光谱、力学性能和耐热老化性能测试.结果表明,添加环氧硅油的PUE的力学性能变差,但老化后的...  相似文献   

12.
在通过化学沉降法制备不同复合率的磁性凹凸棒土(MAT)的基础上,以溶液共混的方法制备了聚乙烯醇(PVA)-MAT纳米复合材料,并用扫描电镜、红外光谱、X射线衍射、热重分析等方法对复合材料的形貌、结构、热性能进行了分析,同时测试了复合材料的力学性能,对磁性凹凸棒土的改性和增强机制进行了探讨。  相似文献   

13.
采用聚四氢呋喃醚二醇(PTMG)、二苯基甲烷二异氰酸酯(MDI)和二胺固化剂C3制备了常规聚氨酯弹性体(PUE);用低游离MDI预聚体E950与C3反应制备了低游离PUE,并对二者的力学性能和动态力学性能进行了对比分析。结果表明,低游离PUE的硬度、拉伸强度、撕裂强度、耐磨性能较常规PUE好。温度低于-40℃时,低游离PUE的储能模量比常规PUE低,-65~-30℃时,低游离PUE的损耗模量、损耗因子比常规PUE的低,温度低于-75℃后情况相反,但在30℃以上时,二者的动态力学性能相近。  相似文献   

14.
以端羟基聚丁二烯.丙烯腈共聚物(HTBN)和聚四氢呋喃醚二醇混合物为软段,对苯二异氰酸酯、3,5-二甲硫基甲苯二胺为硬段,玻璃纤维(GF)或纳米SiO2为增强剂,采用浇注工艺制备HTBN型聚氨酯弹性体(PUE),讨论了增强剂品种及用量、经硅烷偶联剂表面处理的GF对HTBN型PUE的力学性能和耐腐蚀性能的影响,并采用扫描电子显微镜(SEM)进行形貌表征。结果表明,GF或纳米SiO2对提高HTBN型PUE的力学性能有一定作用,但质量分数不能超过5%,GF的增强效果好于纳米SiO2。硅烷偶联剂可有效避免GF的团聚、提高HTBN型PUE与GF的相容性,界面粘接力增加,增强效果得到明显提升。GF增强HTBN型PUE复合材料具有较好的耐盐水和耐溶剂性能,拉伸强度损失率不超过7%。  相似文献   

15.
以甲苯二异氰酸酯(TDI)、端羟基聚丁二烯-丙烯腈共聚物(HTBN)、聚四氢呋喃醚二醇(PTMG)为主要原料,3,5-二甲硫基甲苯二胺(DMTDA)为扩连剂,采用浇铸法制备了聚氨酯弹性体。研究了聚氨酯预聚体中NCO含量、HTBN/PTMG质量比、PTMG相对分子质量和改变扩链剂用量以及热处理时间对聚氨酯弹性体力学性能的影响。结果表明,低相对分子质量PTMG和高热处理温度有利于提高聚氨酯弹性体的力学性能,当聚氨酯预聚体中HTBN/PTMG的质量比为50∶50、NCO质量分数为5.98%、NCO/NH2摩尔比为1.20、115℃下热处理2 h时,聚氨酯弹性体的力学性能最佳。  相似文献   

16.
密封件用聚氨酯弹性体的研制   总被引:1,自引:0,他引:1  
合成了可用于动态密封体系的聚氨酯弹性体,讨论了多元醇、异氰酸酯、合成工艺、扩链剂、润滑剂等因素对聚氨酯材料力学性能的影响。所合成的聚氨酯材料耐磨性好,力学强度大,可用于制备高性能密封件。  相似文献   

17.
经过纳米改性后的聚脲涂料具有优异的物理性能和耐化学介质性能,综述了纳米改性后的聚脲涂料的改性原理和喷涂施工原理,介绍了纳米改性聚脲涂料的应用领域、施工实例发展趋势。  相似文献   

18.
采用不同偶联剂对纳米碳化硅进行表面处理后,制备了聚四氟乙烯/纳米碳化硅复合材料,考察了偶联剂种类和含量随载荷变化对复合材料摩擦磨损性能的影响,并利用扫描电子显微镜观察和分析了复合材料磨损表面形貌及其磨损机理。结果表明,经表面处理的纳米碳化硅填充后的复合材料硬度和摩擦磨损性能均有提高,以钛酸酯偶联剂(NDZ101)处理效果最好;随着偶联剂含量的增大,钛酸酯偶联剂(NDZ101)处理的复合材料的磨损量和摩擦因数均增大,偶联剂最佳含量为填料质量的1 %;偶联剂处理后的纳米碳化硅与基体之间形成了良好的界面,复合材料的磨损以黏着磨损和磨粒磨损为主。  相似文献   

19.
聚氨酯改性环氧胶粘剂的研究   总被引:9,自引:0,他引:9  
聚氨酯预聚体通过催化剂与环氧树脂接枝反应合成了蒙氨酯改性环氧树脂。该树脂在改性胺和催化剂作用下,具有良好的施工性能和较高的强度,对极性基材和非极性PE材料具有良好的粘接性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号