首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 62 毫秒
1.
现在,人们希望把半导体激光器应用在加工领域中,要求其波长达到800nm,以往在民用范畴内应用激光二极管,它是一种应用在小型光盘上的光源,它的光输出功率大约为5mW,但是,光盘读出信号则需较高的输出功率,今后,光盘要求同样波长范围的输出功率为30mW,而且用组合激光器能获得5000W(脉冲)输出功率。  相似文献   

2.
介绍了国内外主要高功率半导体激光器研制机构和用户寿命评价新的实验和测量方法、寿命数据,分析了开展寿命评价的一些研究思路和方法.  相似文献   

3.
对影响分子束外延( MBE) 材料生长的一些主要因素进行了细致的分析。利用MBE生长出GaAlAs/GaAs 梯度折射率分别限制单量子阱激光器(GRIN- SCH- SQW) 材料。利用该材料制作出的列阵半导体激光器的准连续输出功率达到了60 W(t= 200 μs,f= 50 Hz) ,峰值波长为808 .4 nm 。  相似文献   

4.
报道了一种采用大光学腔结构的InGaAs/GaAs/AlGaAs应变量子阱高功率半导体激光器。在量子阱能级本征值方程的数值求解基础上 ,优化了InGaAs阱层材料的In组份含量 ;采用大光学腔结构以有效降低垂直于结平面方向的光束发散角及腔面的光功率密度 ,实现器件的高功率、低发散角光。设计的激光器外延结构采用分子束外延 (MBE)方法生长 ,成功获得具有较低激射阈值的 94 0nm波长激光器外延片。对 10 0 μm条形 ,10 0 0 μm腔长的制备器件测试表明 ,器件的最大连续输出功率达到 2W ,峰值波长为 939.4nm ,远场水平发散角为 10° ,垂直发散角为 30°。器件的阈值电流为 30 0mA。  相似文献   

5.
高功率高亮度半导体激光器件   总被引:1,自引:2,他引:1  
由于半导体激光器在光电转换效率、输出功率、使用寿命等方面的优势,广泛应用于军事领域.为提高输出功率,将两束同一波长不同偏振态的激光束耦合以获得更高功率输出,是目前国际研究的热点之一.进行国内连续808 am两半导体激光迭阵耦合实验.采用自行设计光学系统对光束进行扩束聚焦,可耦合输出光斑2 min×2 mm,总体输出效率大于50%.国内没有对迭阵进行耦合实验的报道.为达到耦合器件的输出效率自行设计耦合选择器的镀膜材料体系,并将此研究应用于光电对抗实验中.  相似文献   

6.
阐述了高功率光纤耦合半导体激光器在连续和脉冲光纤激光器中的应用。通过实验研究,得到了输出功率30 w的1 060 nm的连续光纤激光输出和20 kW的脉冲峰值功率输出。  相似文献   

7.
高功率半导体激光器评述   总被引:8,自引:3,他引:5  
曹三松 《激光技术》2000,24(4):203-207
作者综合评述了高功率半导体激光器的发展现状,对高功率半导体阵列器件结构进行了分析,介绍了设计高功率半导体激光器所涉及的关键技术。  相似文献   

8.
高功率半导体激光器互连界面可靠性研究   总被引:2,自引:1,他引:1  
彭勃  张普  陈天奇  赵崟岑  吴的海  刘晖 《红外与激光工程》2018,47(11):1105002-1105002(8)
随着高功率半导体激光器(HPLD)在极端环境中的应用越来越广泛,互连界面的可靠性已成为制约其性能和寿命的关键瓶颈之一。文中利用有限元方法(FEM)对传导冷却(CS)高功率半导体激光器巴条互连界面在-55~125℃热冲击条件下的失效行为和寿命进行了模拟与分析。基于粘塑性Anand本构模型和Darveaux能量积累理论,对比了热冲击后界面层边缘及中心位置铟互连界面的可靠性,发现互连界面边缘的应力最大,达到0.042 5 GPa;相应的边缘位置的寿命最短,只有3 006个周期,即边缘位置为互连界面的最危险单元。预测了采用铟、金锡合金和纳米银焊膏封装的半导体激光器巴条的寿命,计算出铟、金锡合金和纳米银焊膏三种不同键合材料在边缘位置的寿命分别为3 006、4 808和4 911次循环,表明纳米银焊膏和金锡合金在热冲击条件下具有更长的寿命,更适合于用于极端环境的高功率半导体激光器封装。  相似文献   

9.
分析了影响列阵半导体激光器输出功率的因素。利用分子束外延生长方法生长出InGaAs/GaAs应变量子阱激光器材料。利用该材料制作出的应变量子阱列阵半导体激光器准连续(100Hz,100μs)输出功率达到80W(室温),峰值波长为978-981nm。  相似文献   

10.
高功率半导体激光器技术发展与研究   总被引:3,自引:0,他引:3  
高功率半导体激光器及阵列具有可用激光波长丰富、电光转换效率高、调制特性好等许多优点,特别是作为固体激光器和光纤激光器的高效率泵浦源而获得的全固态紧凑型激光器,持续受到极大的关注,得到快速发展.近年来在高功率阵列半导体激光器模块化技术、超高效率、高效冷却技术、半导体激光器及阵列的光束质量优化、高效电源驱动技术等方面都取得了长足的进步,促进了其广泛应用.将结合高功率半导体激光国家重点实验室的研究工作,概述近年来国内外半导体激光器技术的研究进展状况和发展趋势.  相似文献   

11.
高功率无铝半导体激光器   总被引:3,自引:0,他引:3  
InGaAsP/GaAs激光器抑制暗线缺陷的形成,器件的突然失效及缓慢退化有所减少。研究表明,高功率无铝半导体激光器比有铝AlGaA/GaAs激光器具有更高的可靠性。文章分析比较了高功率有铝和无铝半导体激光器的优缺点,介绍了波长为808nm的高功能无铝半导体激光器的发展及国内外目前的研究状况。  相似文献   

12.
张靖  刘刚明  田坤  廖柯 《半导体光电》2007,28(2):151-155
大功率半导体激光器在军事领域和工业领域有着广泛的应用.综述了大功率半导体激光器最新研究进展,着重于在提高可靠性、提高功率转换效率、波长稳定、拓展波长范围等方面所取得的进步,并对目前大功率半导体激光器在材料加工领域中的直接应用进行了介绍,并展望了其发展趋势.  相似文献   

13.
大功率半导体激光器的腔面退化是影响其寿命和可靠性的重要因素,长期以来一直是人们关注和研究的重点。本文利用离子铣结合腔面钝化还原层的方法对大功率半导体激光器的腔面进行处理。结果显示,离子铣腔面钝化能够在一定程度上减少半导体激光器的功率退化,168h加速老化后退化幅度降低4.5%;同时该技术对老化过程中COD阈值降低有明显的抑制作用,可有效减少使用中的突然失效。结果表明,该技术能够改善半导体激光器的腔面特性,器件的可靠性和使用寿命可望得到提高。  相似文献   

14.
分析了影响列阵半导体激光器输出功率的因素.利用分子束外延生长方法生长出InGaAs/GaAs应变量子阱激光器材料.利用该材料制作出的应变量子阱列阵半导体激光器准连续(100 Hz,100 μs)输出功率达到 80W(室温),峰值波长为 978~981nm.  相似文献   

15.
高效率大功率连续半导体激光器   总被引:2,自引:1,他引:2  
从大功率半导体激光器的工作机理出发,对影响激光器电光转换效率的主要因素,如激光器的斜率效率ηd、阈值电流Ith、开启电压V0、串联电阻Rs以及工作电流I等进行了分析,进而讨论了提高电光转换效率的主要技术途径。通过对应变量子阱大光腔激光器外延材料开启特性的优化、大功率激光器芯片横向限制工艺的改进以及对大功率微通道热沉制作等技术的研究,制作了808nm连续半导体激光器阵列。在工作电流140A时,阵列工作电压为1.83V,输出功率145W,电光转换效率达到56.6%。  相似文献   

16.
大功率半导体激光器高可靠烧结技术研究   总被引:2,自引:0,他引:2  
王辉 《半导体技术》2007,32(8):682-684
近几年大功率半导体激光器的应用领域越来越广,许多应用领域都要求半导体激光器能够高可靠性工作.工作焊接质量直接影响着大功率半导体激光器的可靠性,焊接缺陷会导致激光器迅速退化.目前国内普遍采用的铟焊料和锡铅焊料都是软焊料,焊层有形成晶须和热疲劳等可靠性问题.为提高烧结可靠性,采用了金锡焊料烧结激光器新技术.金锡焊料是硬焊料,焊接强度高,抗疲劳性好,对金层无浸蚀现象.通过实验研究掌握了金锡焊料的制备和烧结技术,并与铟焊料、锡铅焊料进行了对比实验.实验结果显示采用金锡焊料烧结激光器可获得更好的性能,是提高半导体激光器可靠性的有效途径.  相似文献   

17.
大功率体光栅外腔半导体激光器的输出特性   总被引:2,自引:4,他引:2  
宽条形大功率半导体激光器(LD)存在光谱温漂系数大、光谱宽度宽的缺点,为了改善宽条形大功率半导体激光器的光谱特性,采用一种体光栅(VBG)离轴外腔方法实现了宽条形大功率半导体激光器光谱特性的明显改善和高效率工作.宽条形半导体激光器的外腔结构主要包括激光器输出光束的快、慢轴准直光学透镜和离轴放置的体光栅.宽条形半导体激光器的激射条宽为100μm,当激光器工作电流为4.0 A时,外腔激光器的输出功率高达3.4 W,斜率效率为1.0 W/A,光谱宽度由自由出射条件下的2~3 nm减少为0.2 nm,峰值波长的温漂系数小于0.015 nm/℃.  相似文献   

18.
设计并研制了1cm长折射率渐变分别限制单量子阱(GRIN—SCH—SQW)单条激光器阵列。占空比为20%,在70A工作电流下,输出功率达到61.8W,阈值电流密度为220A/cm^2,斜率效率为1.1W/A,激射波长为808.2nm。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号