首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
This paper focuses on maximum wind power extraction for a wind energy conversion system composed of a wind turbine, a squirrel-cage induction generator, and a matrix converter (MC). At a given wind velocity, the mechanical power available from a wind turbine is a function of its shaft speed. In order to track maximum power, the MC adjusts the induction generator terminal frequency, and thus, the turbine shaft speed. The MC also adjusts the reactive power transfer at the grid interface toward voltage regulation or power factor correction. A maximum power point tracking (MPPT) algorithm is included in the control system. Conclusions about the effectiveness of the proposed scheme are supported by analysis and simulation results.   相似文献   

2.
This paper describes the design and laboratory testing of novel generation apparatus for supplying an isolated DC load from a self-excited induction generator operable at variable speed. The variable-speed generating apparatus consists of a self-excited induction machine, a controlled Graetz bridge rectifier, a voltage-boost power converter, and a control system. The induction generator supplies the rectifier. The voltage-boost power converter interfaces the variable output voltage of the rectifier to the fixed DC voltage required for the load. The rectifier is operated at levels of average DC current and voltage which control machine voltage to the rated AC voltage and which also draw the necessary power to supply the DC load. Performance is enhanced with respect to earlier apparatus in that both the DC voltage supplied to the load and the AC voltage on the machine are simultaneously controlled to fixed reference levels over broad operating ranges of load and speed  相似文献   

3.
A new AC/DC power conversion interface for the self-excited induction generator (SEIG) is proposed here. The proposed AC/DC conversion interface includes an excitation systemand a diode rectifier connected in parallel.The variable frequency AC power generated by the SEIG is converted into DC power by the diode rectifier.The DC power of the diode rectifier can charge a battery set and supply DC loads or be further converted into fixed-frequency AC power by an inverter for AC loads.The DC voltage is expected to be regulated in the above applications.The excitation system supplies an exciting reactive current to maintain the amplitude of the SEIG output voltage to be a constant value. Moreover, it can also serve as an active power filter to suppress the harmonic current generated by the diode rectifier. The excitation system is composed of an AC power capacitor and a power converter connected in series. The AC power capacitor is adapted to provide a basic reactive power, and it can also reduce the voltage rating and the capacity of the power converter. The salient point of the proposed AC/DC power conversion interface is that the capacity of the power converter in the AC/DC power conversion interface can be minimised, and the power loss of the AC/DC power conversion interface can also be reduced. A prototype is developed and tested to verify the performance of the proposed AC/DC power conversion interface.  相似文献   

4.
双馈风力发电用交直交变流器控制策略的研究   总被引:1,自引:0,他引:1  
概述了变速恒频双馈风力发电用交直交变流器的工作原理,转子侧变流器采用基于最大功率点跟踪的并网发电解耦控制策略,网侧变流器采用基于固定开关频率与电网电动势前馈相结合的双闭环控制策略,构建了110kW变速恒频双馈风力发电模拟平台,经过实验结果分析验证了上述控制策略的有效性和可行性。  相似文献   

5.
A simple step-up converter circuit consisting of a single power transistor and an inductor is used as an interface between a PV (photovoltaic) generator and a shunt DC motor driving a centrifugal water pump. The step-up converter allows maximum power output from the PV generator to the motor at all insolation levels. Steady-state performance of the motor is vastly improved as its input voltage and current are stabilized by the regenerative action of the converter. The PV generator operates at maximum power regardless of insolation variations. The converter duty ratio can be set at a fixed optimal value which is valid for all insolation levels. This remarkable property makes this device economically attractive since it is easy to build and does not require any insolation-dependent control as compared to other peak-power tracking devices  相似文献   

6.
This paper presents the modeling, controller design and a steady-state analysis algorithm for a wind-driven induction generator system. An output feedback linear quadratic controller is designed for the static synchronous compensator (STATCOM) and the variable blade pitch in a wind energy conversion system (WECS) in order to reach the voltage and mechanical power control under both grid-connection and islanding conditions. A two-reference-frame model is proposed to decouple the STATCOM real and reactive power control loops for the output feedback controller. To ensure zero steady-state voltage errors for the output feedback controller, the integrals of load bus voltage deviation and dc-capacitor voltage deviation are employed as the additional state variables. Pole-placement technique is used to determine a proper weighting matrix for the linear quadratic controller such that satisfactory damping characteristics can be achieved for the closed-loop system. Effects of various system disturbances on the dynamic performance have been simulated, and the results reveal that the proposed controller is effective in regulating the load voltage and stabilizing the generator rotating speed for the WECS either connected with or disconnected from the power grid. In addition, proper steady-state operating points for an isolated induction generator can be determined by the proposed steady-state analysis algorithm. Constant output frequency control using the derived steady-state characteristics of the isolated induction generator is then demonstrated in this paper.  相似文献   

7.
This paper describes power modulation of a photovoltaic (PV) generator for frequency regulation. The generator has a small electric double-layer capacitor. The capacitor absorbs rapid fluctuations of PV generation, and allows the generator to change its output at a limited ramp rate. The capacitor voltage is kept at a specified value to maintain adequate energy storage. The generator output is modulated in proportion to the frequency deviation. The responses to step and periodic changes of the frequency are examined. The voltage control is modified so as not to affect the frequency control. It is shown by numerical simulations that the PV generator cooperates well with conventional generators. Some experimental results are demonstrated to validate the proposed method.   相似文献   

8.
In this paper a neural network controller for achieving maximum power tracking as well as output voltage regulation, for a wind energy conversion system (WECS) employing a permanent magnet synchronous generator, is proposed. The permanent magnet generator (PMG) supplies a DC load via a bridge rectifier and two buck–boost converters. Adjusting the switching frequency of the first buck–boost converter achieves maximum power tracking. Adjusting the switching frequency of the second buck–boost converter allows output voltage regulation. The on-times of the switching devices of the two converters are supplied by the developed neural network (NN). The effect of sudden changes in wind speed, and/or in reference voltage on the performance of the NN controller are explored. Simulation results showed the possibility of achieving maximum power tracking and output voltage regulation simultaneously with the developed NN controller. The results proved also the fast response and robustness of the proposed control system.  相似文献   

9.
This paper presents new integrated model for variable-speed wind energy conversion systems, considering a more accurate dynamic of the wind turbine, rotor, generator, power converter and filter. Pulse width modulation by space vector modulation associated with sliding mode is used for controlling the power converters. Also, power factor control is introduced at the output of the power converters. Comprehensive performance simulation studies are carried out with matrix, two-level and multilevel power converter topologies in order to adequately assert the system performance. Conclusions are duly drawn.  相似文献   

10.
The MHD generator is examined as a converter of the gas kinetic energy to electric power. A number of modeling assumptions allow determination of maximum power removal with the highest efficiency, both of which must be large for the MHD generator to be a practical component of a high efficiency energy conversion system. This paper identifies the optimal flow conditions and allows determination of the fraction of the flow's total enthalpy which can be removed as electric power.  相似文献   

11.
This paper presents a low power wind energy conversion system (WECS) based on a permanent magnet synchronous generator and a high power factor (PF) rectifier. To achieve a high PF at the generator side, a power processing scheme based on a diode rectifier and a boost DC–DC converter working in discontinuous conduction mode is proposed. The proposed generator control structure is based on three cascaded control loops that regulate the generator current, the turbine speed and the amount of power that is extracted from the wind, respectively, following the turbine aerodynamics and the actual wind speed. The analysis and design of both the current and the speed loops have been carried out taking into consideration the electrical and mechanical characteristics of the WECS, as well as the turbine aerodynamics. The power loop is not a linear one, but a maximum power point tracking algorithm, based on the Perturb and Observe technique, from which is obtained the reference signal for the speed loop. Finally, to avoid the need of mechanical sensors, a linear Kalman Filter has been chosen to estimate the generator speed. Simulation and experimental results on a 2‐kW prototype are shown to validate the concept. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

12.
M.  S.  J.C.  J.L. 《Renewable Energy》2006,31(9):1455-1470
Wind energy is a prominent area of application of variable speed generators operating on the constant grid frequency. A modern wind energy system of this type consists of a surface mounted permanent-magnet generator with a frequency converter, which allows variable speed operation. The maximum power capability of the wind energy system is limited by the grid inverter. The theoretical formulation for active and reactive power limits is given. This formulation is used to set power reference limits to the inverter. Two different regions are distinguished depending on the tolerable Ac current harmonic distortion. Experimental results in a variable frequency wind energy generation system are shown.  相似文献   

13.
The present paper presents results from a wave energy conversion that is based on a direct drive linear generator. The linear generator is placed on the seabed and connected to a buoy via a rope. Thereby, the natural wave motion is transferred to the translator by the buoy motion. When using direct drive generators, voltage and current output will have varying frequency and varying amplitude and the power must be converted before a grid connection. The electrical system is therefore an important part to study in the complete conversion system from wave energy to grid connected power. This paper will bring up the first steps in the conversion: rectification and filtration of the power. Both simulation studies and offshore experiments have been made. The results indicate that this kind of system works in a satisfactory way and a smooth DC power can be achieved with one linear generator.  相似文献   

14.
Experimental results from near shore bottom standing OWC based wave energy plants in Japan and India have now been available for about a decade. Historically the weakest link in the conversion efficiency of OWC based wave energy plants built so far has been the bidirectional turbine. This is possibly because a single turbine has been required to deliver power when the plant is exposed to random incident wave excitation varying by a factor of 10. A new topology that uses twin unidirectional turbines (which features a high efficiency spanning a broad range) is proposed. Using the Indian Wave Energy plant as a case study, it is shown that the power output from such a module considerably exceeds existing optimal configurations including those based on a fixed guide vane impulse turbine, linked guide vane impulse turbine or a Well's turbine. A wave to wire efficiency of the order of 50% over the incident range is shown to be feasible in a credible manner by showing the output at all stages of the conversion process. A frequency domain technique is used to compute the OWC efficiency and a time domain approach used for the power module with the turbine pressure being the pivotal variable.  相似文献   

15.
Grid connection of small permanent magnet generator (PMG) based wind turbines requires a power conditioning system comprising a bridge rectifier, a dc–dc converter and a grid-tie inverter. This work presents a reliability analysis and an identification of the least reliable component of the power conditioning system of such grid connection arrangements. Reliability of the configuration is analyzed for the worst case scenario of maximum conversion losses at a particular wind speed. The analysis reveals that the reliability of the power conditioning system of such PMG based wind turbines is fairly low and it reduces to 84% of initial value within one year. The investigation is further enhanced by identifying the least reliable component within the power conditioning system and found that the inverter has the dominant effect on the system reliability, while the dc–dc converter has the least significant effect. The reliability analysis demonstrates that a permanent magnet generator based wind energy conversion system is not the best option from the point of view of power conditioning system reliability. The analysis also reveals that new research is required to determine a robust power electronics configuration for small wind turbine conversion systems.  相似文献   

16.
This paper presents the modeling and control design for a wind energy conversion scheme using induction generators. The scheme consists of a three-phase induction generator driven by a horizontal axis wind turbine and interfaced to the utility through a double overhead transmission line. A static VAr compensator was connected at the induction generator terminals to regulate its voltage. The mechanical power input was controlled using the blade pitch-angle. Both state and output feedback controllers are designed using MATLAB software to regulate the generator output. From the simulation results, the response of closed loop system exhibited a good damping and fast recovery under different type of large disturbances  相似文献   

17.
The steady-state performance of the variable speed constant frequency double output induction generator (VSCF-DOIG) is investigated. The generator is subjected to a strict control strategy in which the stator current is kept constant and equal to its rated value. This allows the generator to deliver rated power from its stator terminals, while from its rotor terminals a variable power output is obtained that is proportional to its rotor speed. Thus more than rated power can be extracted from the induction machine without overheating. The theoretical results of this investigation are verified experimentally.  相似文献   

18.
Today, many countries are integrating large amount of wind energy into the grid and many more are expected to follow. The expected increase of wind energy integration is therefore a concern particularly to transmission grid operators. Based on the past experience, some of the relevant concerns when connecting significant amount of wind energy into the existing grid are: fault ride through requirement to keep wind turbines on the grid during faults and wind turbines have to provide ancillary services like voltage and frequency control with particular regard to island operation.While there are still a number of wind turbines based on fixed speed induction generators (FSIG) currently running, majority of wind turbines that are planned to be erected are of variable speed configurations. The reason for this is that FSIG are not capable of addressing the concern mentioned above. Thus, existing researches in wind turbines are now widely directed into variable speed configurations. This is because apart from optimum energy capture and reduction of mechanical stress, preference of these types is also due to the fact that it can support the network such as its reactive power and frequency regulation. Variable wind turbines are doubly fed induction generator wind turbines and full converters wind turbines which are based on synchronous or induction generators.This paper describes the steady state and dynamic models and control strategies of wind turbine generators. The dynamic models are presented in the dq frame of reference. Different control strategies in the generator side converter and in the grid side converter for fault ride through requirement and active power/frequency and reactive/voltage control are presented for variable speed wind turbines.  相似文献   

19.
Efficiency of three wind energy generator systems   总被引:3,自引:0,他引:3  
This paper presents a method to calculate the average efficiency from the turbine shaft to the grid in wind energy converters. The average efficiency of three 500 kW systems are compared. The systems are: a conventional grid-connected four-pole induction generator equipped with a gear, a variable-speed synchronous generator equipped with a gear and a frequency converter, and a directly driven variable-speed generator equipped with a frequency converter. In this paper it is shown that a variable-speed generator system can be almost as efficient as one for constant speed, although it has much higher losses at rated load. The increased turbine efficiency that variable speed leads to has not been included in this paper. It is also found that a directly driven generator can be more efficient than a conventional four-pole generator equipped with a gear  相似文献   

20.
在分析了双馈风力发电机组运行特性的基础上,提出一种基于双环控制的变换器控制策略。在转子侧,变换器采用定子磁链定向矢量控制技术,推导出了用转子有功电流和无功电流独立解耦控制有功功率和无功功率的策略,并实现了风能的最大跟踪;在电网侧,变换器采用电网电压定向矢量控制技术,构建了电流内环、电压外环的双闭环PI控制系统。利用PSCAD/EMTDC软件,构建了双馈风力发电机组仿真模型。仿真结果验证了所提控制策略的有效性和合理性  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号