首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The thermodynamic stability of the bcc and fcc based ordered phases in Ni-Ti and Ni-AI has been studied with a highly accurate first-principles electronic structure method. The occurrence of a martensitic transformation in Ni-AlB2 ordered intermetallic alloys is discussed with relation to the existence of intermediate structures between bcc and fcc based phases. It is shown that closely related ordered structures can exist on fcc and bcc lattices in the composition range where the transformation occurs. The Ni-rich side of the Ni-Al phase diagram has been computed, and a comparison with a recent assessment is made. In addition, the rather unusual appearance of the NiTi B2 ordered structure in the phase diagram is discussed. This paper was presented at the International Phase Diagram Prediction Symposium sponsored by the ASM/MSD Thermodynamics and Phase Equilibria Committee at Materials Week, October 21–23,1991, in Cincinnati, Ohio. This symposium was organized by John Morral, University of Connecticut, and Philip Nash, Illinois Institute of Technology.  相似文献   

2.
The thermodynamic stability of the bcc and fcc based ordered phases in Ni-Ti and Ni-AI has been studied with a highly accurate first-principles electronic structure method. The occurrence of a martensitic transformation in Ni-AlB2 ordered intermetallic alloys is discussed with relation to the existence of intermediate structures between bcc and fcc based phases. It is shown that closely related ordered structures can exist on fcc and bcc lattices in the composition range where the transformation occurs. The Ni-rich side of the Ni-Al phase diagram has been computed, and a comparison with a recent assessment is made. In addition, the rather unusual appearance of the NiTi B2 ordered structure in the phase diagram is discussed. This paper was presented at the International Phase Diagram Prediction Symposium sponsored by the ASM/MSD Thermodynamics and Phase Equilibria Committee at Materials Week, October 21–23,1991, in Cincinnati, Ohio. This symposium was organized by John Morral, University of Connecticut, and Philip Nash, Illinois Institute of Technology.  相似文献   

3.
Atomistic Monte Carlo simulations based on modified embedded-atom method (MEAM) interatomic potentials have been carried out to clarify the differences in swelling rates between bcc and fcc Fe and between pure bcc Fe and bcc Fe−Cr alloys. Assuming that the transient regimes prior to the onset of steady-state swelling correspond to the void nucleation stage, the effect of crystallographic structure (bcc vs. fcc) or Cr alloying on the void nucleation rate under a given amount of supersaturated vacancies was examined. It was found that the void nucleation rate is much higher in fcc Fe than in bcc Fe. Randomly distributed Cr atoms slightly increase the void nucleation rate in bcc Fe, but microstructural evolutions such as the precipitation of Cr-rich phase have more decisive effects, serving as a vacancy sink. The reasons for the individual results are rationalized in terms of the binding energy of vacancy clusters and the size difference between Fe and Cr atoms.  相似文献   

4.
《Acta Materialia》2007,55(19):6634-6641
Two different mechanisms of the stress-induced martensitic phase transformation at the crack tip in body-centered cubic (bcc) structural metals and alloys have been studied by molecular dynamics simulations. For cracks with 〈1 0 0〉 crack fronts, the bcc (B2) to face-centered cubic (fcc) (L10) phase transformation along the Bain stretch occurs. Whereas for cracks with 〈1 1 0〉 crack fronts, either the bcc (B2) to fcc (L10) or the bcc (B2) to hexagonal close-packed (hcp) transformation is the candidate. We have found that the combination of local stress and crystal orientation plays an important role in the mechanism of the martensitic transformation. Thus a simple way to determine the mechanism of the martensitic transformation is developed. The complicated deformation behaviors at the crack tip in bcc iron and B2 NiAl are discussed in terms of this method.  相似文献   

5.
6.
7.
Nanocrystalline Al60Ni40 and Ni have been obtained by rod milling Al and Ni powder mixtures and chemical leaching Al atoms from the rod-milled Al60Ni40, respectively. The rod-milled alloy powders retained their bcc structure after being treated at room temperature and at 85 °C with a 25–30 wt.% KOH solution. The leached powders are very active and easily explode when they come into contact with air. The leached powders were transformed to a ferromagnetic fcc phase at high temperature. On cooling of the specimen from 600 °C, spontaneous magnetization M sharply increased at about 350 °C, indicating that the bcc phase was transformed to an fcc phase. It has been confirmed that the leaching temperature and annealing temperature and KOH concentration have a considerable effect on structural and magnetic properties.  相似文献   

8.
采用放电等离子烧结法在不同温度下制备AlCrCoFeNi2.1高熵合金(HEA),并对其微观组织、耐腐蚀性能和力学性能进行了研究。结果表明,烧结后的AlCrCoFeNi2.1 HEA最大相对密度可达99.18%;该HEA主要由体心立方(bcc)相和面心立方(fcc)相组成,其比例分别为20.6%和79.4%。与fcc相相比,AlCrCoFeNi2.1 HEA中bcc相的再结晶组织和变形组织更多,且bcc相在3.5%(质量分数)NaCl溶液中更容易被腐蚀。随着应变速率的增加,bcc相和fcc相的压力恢复速率降低,硬化效果增强。在1050 ℃下烧结的AlCrCoFeNi2.1 HEA具有较高的极限抗拉伸强度,这主要归因于晶界强化、固溶强化和合金粒子之间良好的界面结合。该HEA的断裂形式包括bcc相的脆性断裂和fcc相的韧性断裂。  相似文献   

9.
A series of single bcc,bcc plus fcc duplex and single fcc microcrystalline coatings of1Cr18Ni9Ti stainless steel were prepared by using sputtering technique.The resistanceagainst pitting corrosion was studied by measurements of pitting corrosion potentials andelectrochemical noise during initiation of corrosion pits.The results show that the sputteredcoatings with single bcc phase or single fcc structure are more resistant to pitting corrosionthan those with bcc plus fcc duplex phase structure.  相似文献   

10.
An atomic transition model of a face-centered cubic (fcc) crystal to a primitive hexagonal ω and body-centered cubic (bcc) structures has been crystallographically built. The fcc structure can transform into the ω structure through a local shuffling or displacement of atoms about 0.4014 Å in iron for a fcc iron = 3.59 Å. The bcc structure can form either after the ω formation or concurrently by the similar mechanism, or the ω structure can be treated as an intermediate stage during the transition of fcc → bcc. Such a transition (fcc → ω + bcc transition) can be confirmed by Widmanstätten pattern formed in an iron meteorite, pearlitic structure and martensite composed of bcc-ferrite and ultra-fine ω particles in iron-carbon steels. The present fcc-bcc orientation relationship matches with Pitsch’s one.  相似文献   

11.
Metal Science and Heat Treatment - The structural state and the post-deformation mechanical properties of steel 10 (bcc), copper M1 (fcc) and titanium Grade 4 (hcp) are studied using the method of...  相似文献   

12.
采用"机械合金化+SPS烧结"制备了CoFeNiAl0.6Ti0.4和CrCoFeNiAl0.6Ti0.4块体高熵合金,研究元素Cr对CoFeNiAl0.6Ti0.4高熵合金的合金化行为和组织的影响。结果表明:Cr元素并不影响CoFeNiAl0.6Ti0.4高熵合金的合金化顺序,而影响完全合金化后的晶体结构,使CoFeNiAl0.6Ti0.4高熵合金原本单一的fcc结构转变为fcc+bcc结构。SPS烧结后,CoFeNiAl0.6Ti0.4高熵合金主要为fcc+bcc主相+微量bcc白相,而Cr元素的添加促使合金转变成fcc主相+微量bcc白相。同时,合金元素Cr的加入,使CoFeNiAl0.6Ti0.4高熵合金中的微量白相,由原本富Al和Fe元素转变为富Al和Ti元素;且Cr元素不影响CoFeNiAl0.6Ti0.4高熵合金中fcc结构的纳米孪晶组织的形成。  相似文献   

13.
To assist the science-based design of alloys with martensitic microstructure, a multicomponent database kMART (kinetics of MARtensitic Transformation) encompassing the components Al, C, Co, Cr, Cu, Fe, Mn, Mo, N, Nb, Ni, Pd, Re, Si, Ti, V, and W has been developed to calculate the driving force for martensitic transformation. Built upon the SSOL database of the Thermo-Calc software system, a large number of interaction parameters of the SSOL database have been modified, and many new interaction parameters, both binary and ternary, have been introduced to account for the heat of transformation, T 0 temperatures, and the composition dependence of magnetic properties. The critical driving force for face-centered cubic (fcc) → body-centered cubic (bcc) heterogeneous martensitic nucleation in multicomponent alloys is modeled as the sum of a strain energy term, a defect-size-dependent interfacial energy term, and a composition-dependent interfacial work term. Using our multicomponent thermodynamic database, a model for barrierless heterogeneous martensitic nucleation, a model for the composition and temperature dependence of the shear modulus, and a set of unique interfacial kinetic parameters, we have demonstrated the efficacy of predicting the fcc → bcc martensitic start temperature (M s ) in multicomponent alloys with an accuracy of ± 40 K over a very wide composition range.  相似文献   

14.
利用磁控溅射技术得到纯bcc,bcc+fcc和纯fcc结构的一系列1Cr18Ni9Ti不锈钢微晶层。用电化学方法研究了这些微晶层的耐孔蚀性能。结果表明,单相bcc或单相fcc微晶溅射层比bcc+fcc双相微晶溅射层具有更好的耐孔蚀性能。  相似文献   

15.
An atomistic analysis of the interface mobility in a massive transformation   总被引:1,自引:0,他引:1  
A new multi-lattice kinetic Monte Carlo method has been used for an atomistic study on the interpretation of the interface mobility parameter for a massive face-centred cubic (fcc) to body-centred cubic (bcc) transformation in a single element system. For lateral growth of bcc in a system with an fcc(1 1 1)//bcc(1 1 0) and fcc[1 1 ]//bcc[0 0 ] interface orientation the overall activation energy for the interface mobility parameter is governed by energetically unfavourable atomic jumps. The atoms on the fcc lattice often cannot jump directly to bcc lattice sites because neighbouring atoms block the empty bcc sites. By single unfavourable jumps and by groups of unfavourable jumps a path from fcc to bcc is created. The necessity of these unfavourable jumps leads to an overall activation energy considerably larger than the activation energy barrier for a single atomic jump.  相似文献   

16.
叶倩  赵世金 《上海金属》2012,34(3):9-12
采用分子动力学模拟了Fe99Cu1合金在1×1014 K/s冷速下从fcc奥氏体结构转变为bcc铁素体结构的相变过程.结果表明,Fe99 Cu1合金在900~800℃之间开始发生相变,600 ℃时相变明显,100℃时55%的原子转变为bcc结构.Cu元素阻碍合金相变,并且促进bcc孪晶形成.  相似文献   

17.
We have succeeded to fabricate body-centered cubic (bcc) single phase of Fe–Mn–Ga alloys using melt-spinning technique. Heusler type L21 structure of Fe2MnGa alloy are predicted to have half-metallic properties, however bulk Fe2MnGa alloys crystallize into face-centered cubic (fcc) lattice with small admixture of bcc phase. By changing either ejection temperature or rotation speed of melt-spinning processing parameters, fcc or bcc lattice can be obtained from same precursor ingot. For stoichiometric Fe2MnGa as-spun alloy, super-lattice diffraction peaks indicative of L21 structure are observed from XRD measurements. The as-spun bcc alloys transform into ferromagnetic hexagonal lattice by thermal annealing.  相似文献   

18.
通过分子动力学模拟,采用较先进的键型指数法HA及原子团类型指数法CTIM-2,对Fe连续升温、降温过程中微观结构进行模拟研究.结果表明:连续升温过程,Fe的微观结构变化是bcc→fcc\hcp→bcc→液体;连续降温过程,Fe的微观结构变化是液体→fcc\hcp.Fe凝固结束没有形成大量的高温bcc晶体,原因是在高温液态中bcc结构原子稳定性较差,fcc和hcp结构原子更易稳定存在.此外,温度变化速率过快,可诱导晶体生长过程中发生层错,促使Fe在升温、降温过程出现fcc和hcp晶体的交替分层分布,这与fcc和hcp晶体的原子能量相近、晶体的致密度相同、原子空间堆垛方式局部相同有关.  相似文献   

19.
Face-centered cubic (fcc) to body-centered cubic (bcc) martensitic transformations occur in many materials, such as steels, FeNi meteorites or brass. The phenomenological theory has been the accepted theory for these transformations for more than half a century. However, it cannot explain the continuous singular features in the experimental electron backscatter diffraction or X-ray diffraction pole figures. Here we show that such patterns can be simulated by one discrete orientation relationship and two continuous rotations that correspond to a trace of the transformation mechanisms. A new theory of martensite transformation that is in full agreement with the experimental pole figures is proposed. In this theory, the fcc–bcc transformation results from a fcc–hexagonal close-packed (hcp) step followed by an hcp–bcc step. The advantages of this two-step theory over the phenomenological theory are discussed.  相似文献   

20.
Microstructures and mechanical properties of dual-phase AlxCrMnFeCoNi (x=0.4, 0.5, 0.6, at.%) alloys were investigated. Thermomechanical processing leads to a microstructural evolution from cast dendritic structures to equiaxed ones, consisting of face-centered cubic (fcc) and body-centered cubic (bcc) phases in the two states. The volume fraction of bcc phase increases and the size of fcc grain decreases with increasing Al content, resulting in remarkably improved tensile strength. Specifically, the serrated flow occurring at the medium temperatures varies from type A+B to B+C or C as the testing temperature increases. The average serration amplitude of these Al-containing alloys is larger than that of CoCrFeNiMn alloy due to the enhanced pinning effect. The early small strain produces low-density of dislocation arrays and bowed dislocations in fcc grains while the dislocation climb and shearing mechanism dominate inside bcc grains. The cross-slip and kinks of dislocations are frequently observed and high-density-tangled dislocations lead to dislocation cells after plastic deformation with a high strain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号