首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Simulations were made to test the effects of age and composition of red clover (Trifolium pratense) based leys on yield of two subsequent spring cereal crops, as well as nitrogen (N) uptake and soil mineral N content. The experimental plots in two trials were cropped for 2–3 years with spring cereals, or 1-, 2- or 3-year-old red clover based leys, followed by spring wheat and subsequent spring oats. CoupModel, a process oriented ecosystem model, was calibrated with measured values of above ground N uptake and soil mineral N contents from plots of cereal monoculture. Cereal N uptake was simulated for a 2 year period in cereals after leys. The calculations of N inputs in incorporated plant material of leys were also tested. Simulated N uptake in the above ground biomass generally agreed with the field data with default values of the model. Some parameters were increased in order to improve plant N uptake and keep the soil mineral N contents at the measured levels. The simulated soil mineral N contents were close to the measured values for surface layers and were more accurate than for deeper layers in the profile. However, the high simulated mineral N increase after harvest in one trial was not seen in field measurements, which remains difficult to explain. Most probably the C:N estimate for crop residues was set too low in the model, but calculated N input was on a reasonable level. These results show that further testing and adjusting of N dynamics in organic farming system using CoupModel should be continued.  相似文献   

2.
A change from cultivated land to grassland generally increases soil organic matter (SOM) content and is a potential option to mitigate greenhouse gas emissions. We investigated the effects of two-year perennial grass and mixed grass/legume leys in a six-year crop rotation on topsoil (0–0.25 m depth) carbon content and on grain yields of winter wheat over a period of 31 years. Different nitrogen fertilisation regimes were included and no manure was added to the experimental plots. We used data from long-term crop rotation experiments at three sites in southern Sweden: Säby (59°49′ N/17°42′ E), Lanna (58°20′ N/13°07′ E) and Stenstugu (57°36′ N/18°26′ E). At Säby, the reduction in topsoil carbon content was smaller in the ley crop rotations than in the crop rotation with only annual crops. There were no statistically significant effects of crop rotation on topsoil carbon at the other two sites. At Lanna, the grain yield increase in winter wheat over time was higher in the mixed legume/grass ley crop rotation than in the other two rotations. Together, these effects of ley on topsoil carbon and winter wheat yield suggest that replacing annual crops with leys in the crop rotation could reduce losses of soil carbon without decreasing total yield of annual crops on a regional scale. We also applied the Introductory Carbon Balance Model (ICBM) to simulate topsoil carbon content at the three sites. Based on the results, measures to improve the model predictability are proposed.  相似文献   

3.
Two crop rotations dominated by spring cereals and grass/clover leys on a clay soil were studied over 2 years with respect to nitrogen (N) and phosphorus (P) leaching associated with pig or dairy slurry application in April, June and October. Leaching losses of total N (TN), total P (TP), nitrate-N and dissolved reactive P (DRP) were determined in separately tile-drained field plots (four replicates). Mean annual DRP leaching after October application of dairy slurry (17 kg P ha?1) to growing grass/clover was 0.37 kg ha?1. It was significantly higher than after October application of pig slurry (13 kg ha?1) following spring cereals (0.16 kg ha?1) and than in the unfertilised control (0.07 kg P ha?1). The proportion of DRP in TP in drainage water from the grass/clover crop rotation (35 %) was higher than from the spring cereal rotation (25 %) and the control (14 %). The grass/clover rotation proved to be very robust with respect to N leaching, with mean TN leaching of 10.5 kg ha?1 year?1 compared with 19.2 kg ha?1 year?1 from the cereal crop rotation. Pig slurry application after cereals in October resulted in TN leaching of 25.7 kg ha?1 compared with 7.0 kg ha?1 year?1 after application to grass/clover in October and 19.1 kg ha?1 year?1 after application to spring cereals in April. In conclusion, these results show that crop rotations dominated by forage leys need special attention with respect to DRP leaching and that slurry application should be avoided during wet conditions or combined with methods to increase adsorption of P to soil particles.  相似文献   

4.
This paper describes the dynamics of soil N mineralization in the experimental intensive dairy farming system ‘De Marke’ on a dry sandy soil in the Netherlands. We hypothesized that knowledge of the effects of crop rotation on soil N mineralization and of the spatial and temporal variability of soil N mineralization in a farming system can be used to better synchronize N application with crop N requirements, and hence to increase the recovery of applied N and to reduce N losses. Soil N mineralization was recorded continuously in the soil layer 0–0.30 m, from 1992 to 2005, using a sequential in situ coring technique on six observation plots, of which two were located in permanent grassland and four in crop rotations with a 3 year grassland phase and an arable phase of 3 or 5 years, dominated by maize. Average annual soil N mineralization was highest under permanent grassland: 381 kg ha?1 and lowest under ≥3rd years arable crops: 184 kg ha?1. In temporary grassland, soil N mineralization increased in the order: 1st year, 2nd year, 3rd year grassland and in arable crops after grassland mineralization decreased in the order: 1st year, 2nd year, ≥3rd years. Total mineral N input, i.e. the sum of N mineralization and mineral N supply to soil, exceeded crop N requirements in 1st year maize and was lower than the requirements in 1st year temporary grassland. N mineralization in winter, outside the growing season, was 77 kg ha?1 in maize and 60 kg ha?1 in grassland. This points at the importance of a suitable catch crop to reduce the susceptibility to N leaching. Temporal and spatial variability of soil N mineralization was high and could not be related to known field conditions. This limits the extent to which N fertilization can be adjusted to soil N mineralization. Variability increased with the magnitude of soil N mineralization. Hence, situations with high soil N mineralization may be associated with high risks for N losses and to reduce these risks a strong build-up of soil organic N should be avoided. This might be achieved, for instance, by fermenting slurry before application on farmland to enhance the fraction mineral N in slurry at the expense of organic N.  相似文献   

5.
Field experiments with silage maize during eight years on a sandy soil in The Netherlands, showed that dicyandiamide (DCD) addition to autumn-applied cattle slurry retarded nitrification, thus reducing nitrate losses during winter. Spring-applied slurry without DCD, however, was on average associated with even lower losses and higher maize dry matter yields.Economically optimum supplies of mineral N in the upper 0.6 m soil layer in spring (EOSMN), amounted to 130–220 kg ha–1. Year to year variation of EOSMN could not be attributed to crop demand only. According to balance sheet calculations on control plots, apparent N mineralization between years varied from 0.36 to 0.94 kg ha–1 d–1. On average, forty percent of the soil mineral N (SMN) supply in spring, was lost during the growing season. Hence, the amounts of residual soil mineral N (RSMN) were lower than expected. Multiple regression with SMN in spring, N crop uptake and cumulative rainfall as explanatory variables, could account for 79 percent of the variation in RSMN.Postponement of slurry applications to spring and limiting N inputs to economically optimum rates, were insufficient measures to keep the nitrate concentration in groundwater below the EC level for drinking water.  相似文献   

6.
Field trials were carried out between 2002 and 2005 to investigate the effects of biogas digestion in a mixed organic dairy farming system with arable land and grassland on nutrient cycling, nitrogen (N) uptake and crop yields within a cropping system comprising a whole crop rotation. Five treatments were carried out: (i) solid farmyard manure, (ii) undigested liquid slurry, (iii) digested liquid slurry, (iv) digestion of liquid slurry and field residues such as crop residues and cover crops, and (v) similar to iv, but with additional N inputs at the equivalent of 40 kg N ha−1 farmland through digestion of purchased substrates. The term “manure” is used in the present study to mean all kind of aboveground organic residues left on the field (“immobile manures”, such as crop residues and green manures incorporated directly into the soil) or added as stable wastes or effluents of biogas digestion (“mobile manures”). The total aboveground biomass growth and the overall aboveground N uptake of non-legume maincrops were higher in the liquid slurry manure treatment than in the solid farmyard manure system (+5% and +9%, respectively). The digestion of the liquid slurry increased N uptake and crop yields only after soil incorporation of the slurry shortly after field spreading. The additional collection and digestion of field residues such as cover crops and crop residues, combined with a reallocation of the effluents, strongly increased the amounts of “mobile” manure, allowing a more focussed allocation of the available N. This led to an increase in the aboveground N uptake (+12%) and biomass yield (+4%) of the five non-legume crops, due to a better adapted allocation of nutrients in space and time. Results obtained with spring wheat showed that removal of cover crops in autumn, and their digestion, combined with subsequent use as manure in spring resulted in a better synchronisation of the crop N demand and the soil N availability, in comparison with a strategy where the biomass was left on the field as green (immobile) manure. The inclusion of external substrates led to a further increase of 8% in N uptake, but not to a significant increase in aboveground dry matter yields.  相似文献   

7.
Winter oilseed rape (OSR) demands high levels of N fertilizer, often exceeding 200 kg N ha−1. Large amounts of residual soil mineral nitrogen (SMN) after harvest are regularly observed, and therefore N leaching during the percolation period over winter is increased. In this study agronomic strategies (fertilization level, crop rotation, tillage intensity) to control nitrate leaching after OSR were investigated by combining field measurements (soil mineral nitrogen, soil water content, crop N uptake) of a 2-year trial and another 5-year field trial with simulation modeling. The crop-soil model uses a daily time step and was built from existing and partly refined submodels for soil water dynamics, mineralization processes, and N uptake. It was used to reproduce the complex processes of the N dynamics and to calculate N concentration in the leachate and total volume of percolation water. Some parameters values were thereby newly identified based on the agreement between measured data and model results. Although SMN in the 60–90 cm layer was overestimated, the model could reproduce the measured data with an acceptable degree of accuracy. Overfertilization of OSR increased N leaching and therefore the precise calculation of N fertilizer doses is a first step towards prevent N leaching. Compared to ploughing, minimum tillage decreased N leaching when winter wheat was grown as the subsequent crop. Volunteer OSR and Phacelia tanacetifolia were grown as catch crops after OSR harvest. N leaching could be decreased especially when Phacelia was grown, but nitrate concentrations in the drainage water were higher and exceeded the European Union (EU) threshold for drinking water when volunteer OSR was grown. The results of this study provide strong evidence that reduced tillage or growing of noncruciferous catch crops decrease N leaching and may be used as an agricultural measure to prevent N pollution.  相似文献   

8.
Dairy farming is one of the main contributors to nitrate leaching to groundwater, particularly on soils that are susceptible to leaching, such as light well-drained sandy soils. In the Netherlands, as in many other European countries, these soils are predominantly used for dairy farming. A prototype dairy farming system that has been implemented in practice in 1989 has continuously been adapted since then to meet environmental standards (i.e. the EU-standard of 50 mg NO3 l−1) without reducing milk production intensity (11900 kg ha−1). After an initial decline in nitrate concentration from 193 mg l−1 to 63 upon implementation, it subsequently ‘stabilized’ at a level higher than the environmental standard: 55 mg l−1. The goal of this paper is to examine causes of excessive nitrate leaching. This was done by relating measured nitrate concentrations with management characteristics such as N balances, cropping patterns and grazing intensities. Special attention was paid to aspects that were supposed to be conducive for leaching: crop rotation of grass and maize and grazing. No evidence was found for enhanced nitrate leaching due to the rotation of grass with maize compared to permanent cultivation. This could be ascribed to the reduction in fertilization levels in first and second year maize with 90 and 45 kg N ha−1, respectively to account for the expected N release from the ploughed-in grass sod. Triticale was found to lead to higher leaching than grass or maize which is attributed to its poor growth in the period that it should function as catch crop in maize. Grazing contributed to a nitrate increase of about 30 mg NO3 l−1 on grassland. As grazing management and intensity is already strictly optimized in order to restrict nitrate leaching, this result underpins the need to develop sustainable grazing methods on soil that is susceptible to nitrate leaching.  相似文献   

9.
We applied a mechanistic ecosystem model to investigate the production and environmental performances of (1) current agricultural practice on two fields of a stockless organic cereal farm in southeast Norway and (2) alternative cereal-ley rotations and plowing time scenarios. Scenarios were simulated using historic weather data and a climate change scenario. Measured and simulated soil mineral N concentrations were generally low (1–4 g N m−2) and in good agreement. Simulated nitrate leaching was similar for the two fields, except when an extended period of black fallow weeding was practiced on one of them. Scenario simulations indicated that continuous cereal cropping undersown with a clover–grass winter cover crop performed best when evaluated by whole-rotation grain yield, the N yield/input-, and N loss/yield-ratios, and greenhouse gas emissions. However, the rotation had the largest soil organic matter losses. The N use and loss efficiency indicators were especially poor when ley years occurred consecutively and under fall plowing. Total greenhouse gas emissions were, however, smaller for the fall-plowed scenarios. In conclusion, our results indicated a modest potential for improving stockless systems by management changes in plowing time or crop rotation, which was hardly different in the climate change scenarios, although nitrate leaching increased substantially in the winter. Alternative strategies seem necessary to substantially improve the N-use efficiency in stockless organic grain production systems, e.g., biogas production from green manure and subsequent recycling of the digestate. Abandoning the stockless system and reintegrating livestock should also be considered.  相似文献   

10.

Recent interests in improving agricultural production while minimizing environmental footprints emphasized the need for research on management strategies that reduce nitrous oxide (N2O) emissions and increase nitrogen-use efficiency (NUE) of cropping systems. This study aimed to evaluate N2O emissions, annualized crop grain yield, emission factor, and yield-scaled- and NUE-scaled N2O emissions under continuous spring wheat (Triticum aestivum L.) (CW) and spring wheat–pea (Pisum sativum L.) (WP) rotations with four N fertilization rates (0, 50, 100, and 150 kg N ha?1). The N2O fluxes peaked immediately after N fertilization, intense precipitation, and snowmelt, which accounted for 75–85% of the total annual flux. Cumulative N2O flux usually increased with increased N fertilization rate in all crop rotations and years. Annualized crop yield and NUE were greater in WP than CW for 0 kg N ha?1 in all years, but the trend reversed with 100 kg N ha?1 in 2013 and 2015. Crop yield maximized at 100 kg N ha?1, but NUE declined linearly with increased N fertilization rate in all crop rotations and years. As N fertilization rate increased, N fertilizer-scaled N2O flux decreased, but NUE-scaled N2O flux increased non-linearly in all years, regardless of crop rotations. The yield-scaled N2O flux decreased from 0 to 50 kg N ha?1 and then increased with increased N fertilization rate. Because of non-significant difference of N2O fluxes between 50 and 100 kg N ha?1, but increased crop yield, N2O emissions can be minimized while dryland crop yields and NUE can be optimized with 100 kg N ha?1, regardless of crop rotations.

  相似文献   

11.
The DAISY soil–plant–atmosphere model was used to simulate crop production and soil carbon (C) and nitrogen (N) turnover for three arable crop rotations on a loamy sand in Denmark under varying temperature, rainfall, atmospheric CO2 concentration and N fertilization. The crop rotations varied in proportion of spring sown crops and use of N catch crops (ryegrass). The effects on CO2 emissions were estimated from simulated changes in soil C. The effects on N2O emissions were estimated using the IPCC methodology from simulated amounts of N in crop residues and N leaching. Simulations were carried out using the original and a revised parameterization of the soil C turnover. The use of the revised model parameterization increased the soil C and N turnover in the topsoil under baseline conditions, resulting in an increase in crop N uptake of 11 kg N ha–1 y–1 in a crop rotation with winter cereals and a reduction of 16 kg N ha–1 y–1 in a crop rotation with spring cereals and catch crops. The effect of increased temperature, rainfall and CO2 concentration on N flows was of the same magnitude for both model parameterizations. Higher temperature and rainfall increased N leaching in all crop rotations, whereas effects on N in crop residues depended on use of catch crops. The total greenhouse gas (GHG) emission increased with increasing temperature. The increase in total GHG emission was 66–234 kg CO2-eq ha–1 y–1 for a temperature increase of 4°C. Higher rainfall increased total GHG emissions most in the winter cereal dominated rotation. An increase in rainfall of 20% increased total GHG emissions by 11–53 kg CO2-eq ha–1 y–1, and a 50% increase in atmospheric CO2 concentration decreased emissions by 180–269 kg CO2-eq ha–1 y–1. The total GHG emissions increased considerably with increasing N fertilizer rate for a crop rotation with winter cereals, but remained unchanged for a crop rotation with spring cereals and catch crops. The simulated increase in GHG emissions with global warming can be effectively mitigated by including more spring cereals and catch crops in the rotation.  相似文献   

12.
The contribution of ploughing permanent grassland and leys to emissions of N2O and CO2 is not yet well known. In this paper, the contribution of ploughing permanent grassland and leys, including grassland renovation, to CO2 and N2O emissions and mitigation options are explored. Land use changes in the Netherlands during 1970–2020 are used as a case study. Three grassland management operations are defined: (i) conversion of permanent grassland to arable land and leys; (ii) rotations of leys with arable crops or bulbs; and (iii) grassland renovation. The Introductory Carbon Balance Model (ICBM) is modified to calculate C and N accumulation and release. Model calibration is based on ICBM parameters, soil organic N data and C to N ratios. IPCC emission factors are used to estimate N2O-emissions. The model is validated with data from the Rothamsted Park Grass experiments. Conversion of permanent grassland to arable land, a ley arable rotation of 3 years ley and 3 years arable crops, and a ley bulb rotation of 6 years ley and one year bulbs, result in calculated N2O and CO2 emissions totalling 250, 150 and 30 ton CO2-equivalents ha–1, respectively. Most of this comes from CO2. Emissions are very high directly after ploughing and decrease slowly over a period of more than 50 years. N2O emissions in 3/3 ley arable rotation and 6/1 ley bulb rotation are 2.1 and 11.0 ton CO2-equivalents ha–1 year–1, respectively. From each grassland renovation, N2O emissions amount to 1.8 to 5.5 ton CO2-equivalents ha–1. The calculated total annual emissions caused by ploughing in the Netherlands range from 0.5 to 0.65 Mton CO2-equivalents year–1. Grassland renovation in spring offers realistic opportunities to lower the N2O emissions. Developing appropriate combinations of ley, arable crops and bulbs, will reduce the need for conversion of permanent pasture. It will also decrease the rotational losses, due to a decreased proportion of leys in rotations. Also spatial policies are effective in reducing emissions of CO2 and N2O. Grassland ploughing contributes significantly to N2O and CO2 emissions. The conclusion can be drawn that total N2O emissions are underestimated, because emissions from grassland ploughing are not taken into account. Specific emission factors and the development of mitigation options are required to account for the emissions and to realise a reduction of emissions due to the changes in grassland ploughing.  相似文献   

13.
Nitrate (NO3 ) leaching from agriculturalproduction systems is blamed for the rising concentrations ofNO3 in ground- and surface-waters around the world.This paper reviews the evidence of NO3 leachinglosses from various land use systems, including cut grassland, grazed pastures,arable cropping, mixed cropping with pasture leys, organic farming,horticultural systems, and forest ecosystems. Soil, climatic and managementfactors which affect NO3 leaching are discussed.Nitrate leaching occurs when there is an accumulation ofNO3 in the soil profile that coincides with or isfollowed by a period of high drainage. Therefore, excessive nitrogen (N)fertilizer or waste effluent application rates or N applications at the wrongtime (e.g. late autumn) of the year, ploughing pasture leys early in the autumn,or long periods of fallow ground, can all potentially lead to highNO3 leaching losses. N returns in animal urine havea major impact on NO3 leaching in grazed pastures.Of the land use systems considered in this paper, the potential for causingNO3 leaching typically follow the order: forest< cut grassland < grazed pastures, arable cropping < ploughing ofpasture < market gardens. A range ofmanagement options to mitigate NO3 leaching isdescribed, including reducing N application rates, synchronizing N supply toplant demand, use of cover crops, better timing of ploughing pasture leys,improved stock management, precision farming, and regulatory measures. This isfollowed by a discussion of future research needs to improve our ability topredict and mitigate NO3 leaching.  相似文献   

14.
In the coming decade, European dairy farms are obliged to realize a balance between phosphor (P) inputs to their farmland (in inorganic fertilizers and manure) and outputs (in crop products), the so-called P-equilibrium fertilization. The objective of the present study is to analyze the long-term effects of P-equilibrium fertilization on soil-P status (total soil-P and available soil-P), crop yield and P leaching on dry sandy soil, using data from experimental dairy farm ‘De Marke’, where P-equilibrium fertilization has been applied since 1989. For grassland, P availability is expressed in P-Al and for arable land in Pw. Total and available P status were monitored in the upper topsoil (layer 0–0.2 m). Total soil-P was also monitored in the lower topsoil (layer 0.2–0.4 m) and in the subsoil (0.4–0.6 m). From 1989 to 2006, Pw and P-Al (means of all farmland) decreased by 26 and 25%, respectively. In the same period, mean total-P content of the farmland decreased by 16%. There was a large variation in initial P status (1989) of the various plots. The rate of decline in all soil-P indicators was positively correlated to their initial values. In plots with the lowest initial values, P status did not change, while in plots with high initial values it tended to stabilize at lower levels. At equilibrium-P fertilization, Pw is estimated to stabilize at 20. This is lower than the recommended P status of Dutch soils used for maize cropping. P-Al is estimated to stabilize at 30–40, which corresponds to the current recommendations for grassland. The data show that at P-equilibrium fertilization, soil available-P status is higher in a maize-ley rotation than in permanent grassland. The decline in total P and available P did not affect crop yield, nor did it affect the P concentration in groundwater, but at ‘De Marke’, P emission to groundwater is generally low. The results obtained suggest that P-equilibrium fertilization can be compatible with efficient crop production.  相似文献   

15.
An understanding of the dynamics of soil organic carbon (SOC) as affected by farming practices is imperative for maintaining soil productivity and also for restraining global warming by CO2 evolution. Results of a long-term (30 year) experiment in the Indian Himalayas under rainfed soybean (Glycine max L.)—wheat (Triticum aestivum L.) rotation was analyzed to determine the influence of mineral fertilizer and farmyard manure (FYM) application at 10 Mg ha−1 on SOC and total soil nitrogen (TSN) stocks and distribution within different aggregate size fractions. Fertilizers (NP, NK and NPK) and FYM in combination with N or NPK were applied before the soybean crop every year and no nutrient was applied before the wheat crop. Results showed that addition of FYM with N or NPK fertilizers increased SOC and TSN contents. The overall gain in SOC in the 0- to 45-cm soil depth interval in the plots under NPK + FYM treatment over NPK was 17.18 Mg C ha−1 in 30 year. The rate of conversion of input C to SOC was about 19% of each additional Mg C input per hectare. SOC content in large size aggregates was greater than in smaller size aggregates, and declined with decreased aggregate size. Thus, long-term soybean–wheat rotation in a sandy loam soil of the Indian Himalayas sequestered carbon and nitrogen. Soil organic C and TSN sequestration in the 0.25- to 0.1-mm size fraction is an ideal indicator of long-term C and N sequestration, since this fraction retained maximum SOC/TSN stock.  相似文献   

16.
A field experiment was conducted to investigate the effect of timing and method of cultivation of a 3-year old ryegrass/white clover pasture on subsequent N mineralization, NO 3 - -N leaching, and growth and N uptake of a wheat crop in the following season. The size of various N pools and decomposition of14C-labelled ryegrass material were also investigated. Cultivation method (mouldboard or chisel ploughing) generally had no significant effect on the accumulation of mineral N in the profile in the autumn or on the amount of NO 3 - -N leached over winter.14C measurements suggested that initial decomposition rate of plant material was faster from May than March cultivation treatments. Despite this, overall net mineralization of organic N (of soil plus plant origin) increased with increasing fallow period between cultivation and leaching. The total amounts of mineral N accumulated in the soil profile before the start of leaching were 139, 119 and 22 kg N ha–1 for the March, May and July cultivated soils respectively. Cumulative leaching losses over the trial calculated from soil solution samples were 78, 40 and 5 kg N ha–1 for the March, May and July cultivated soils respectively. Differences in N mineralization over the season were generally not reflected by changes in amounts of potentially-mineralizable soil N (as measured by extraction or laboratory incubation) or levels of microbial biomass during the season. The amount of mineral N in the profile in spring increased with decreasing fallow period. This was reflected in an approximately 15% and 25% greater grain yield and N uptake respectively by the following wheat crop in plots cultivated in July rather than in March.  相似文献   

17.
Application of chemical fertilizers and farmyard manure affects crop productivity and improves nutrient cycling within soil–plant systems, but the magnitude varies with soil-climatic conditions. A long-term (1982–2004) field experiment was conducted to investigate the effects of nitrogen (N), phosphorus (P), and potassium (K) fertilizers and farmyard swine manure (M) on seed and straw yield, protein concentration, and N uptake in the seed and straw of 19-year winter wheat (Triticum aestivum L.) and four-year oilseed (three-year canola, Brassica napus L. in 1987, 2000 and 2003; one-year flax, Linum usitatisimum L. in 1991), accumulation of nitrate-N (NO3-N) in the soil profile (0–210 cm), and N balance sheet on a Huangmian soil (calcaric cambisols, FAO) near Tianshui, Gansu, China. The two main plot treatments were without and with farmyard swine manure (M); sub-plot treatments were control (Ck), N, NP, and NPK.␣The average seed yield decreased in the order MNPK ≥ MNP > MN ≥ NPK ≥ NP > M > N > Ck. The average effect of manure and fertilizers on seed yield was in the order M > N > P > K. The seed yield increase was 20.5% for M, 17.8% for N, 14.2% for P, and 2.9 % for K treatment. Seed yield response to fertilizers was much greater for N and P than for K, and it was much greater for no manure than for manure treatment. The response of straw yield to fertilization treatments was usually similar to that of seed yield. The N fertilizer and manure significantly increased protein concentration and N uptake plant. From the standpoint of increasing crop yield and seed quality, MNPK was the best fertilization strategy. Annual applications of N fertilizer and manure for 23 successive years had a marked effect on NO3-N accumulation in the 0–210 cm soil profile. Accumulation of NO3-N in the deeper soil layers with application of N fertilizer and manure is regarded as a potential danger, because of pollution of the soil environment and of groundwater. Application of N fertilizer in combination with P and/or K fertilizers reduced residual soil NO3-N significantly compared with N fertilizer alone in both no manure and manure plots. The findings suggest that integrated and balanced application of N, P, and K fertilizers and␣manure at proper rates is important for protecting soil and groundwater from potential NO3-N pollution and for maintaining high crop productivity in the rainfed region of Northwestern China.  相似文献   

18.
The effects of faba bean, lupin, pea and oat crops, with and without an undersown grass-clover mixture as a nitrogen (N) catch crop, on subsequent spring wheat followed by winter triticale crops were determined by aboveground dry matter (DM) harvests, nitrate (NO3) leaching measurements and soil N balances. A 2½-year lysimeter experiment was carried out on a temperate sandy loam soil. Crops were not fertilized in the experimental period and the natural 15N abundance technique was used to determine grain legume N2 fixation. Faba bean total aboveground DM production was significantly higher (1,300 g m?2) compared to lupin (950 g m?2), pea (850 g m?2) and oat (1,100 g m?2) independent of the catch crop strategy. Faba bean derived more than 90% of its N from N2 fixation, which was unusually high as compared to lupin (70–75%) and pea (50–60%). No effect of preceding crop was observed on the subsequent spring wheat or winter triticale DM production. Nitrate leaching following grain legumes was significantly reduced with catch crops compared to without catch crops during autumn and winter before sowing subsequent spring wheat. Soil N balances were calculated from monitored N leaching from the lysimeters, and measured N-accumulation from the leguminous species, as N-fixation minus N removed in grains including total N accumulation belowground according to Mayer et al. (2003a). Negative soil N balances for pea, lupin and oat indicated soil N depletion, but a positive faba bean soil N balance (11 g N m?2) after harvest indicated that more soil mineral N may have been available for subsequent cereals. However, the plant available N may have been taken up by the grass dominated grass-clover catch crop which together with microbial N immobilization and N losses could leave limited amounts of available N for uptake by the subsequent two cereal crops.  相似文献   

19.
There is not sufficient knowledge concerning the risks involved in NO3–N leaching in relation to the use of cover crops and mulches. A 2 year field experiment was carried out in a pepper (Capsicum annuum L.) crop transplanted into different soil management treatments which involved the addition of mulch of three different types of winter cover crops (CC) [hairy vetch (Vicia villosa Roth.), subclover (Trifolium subterraneum L.), and a mixture of hairy vetch/oat (Avena sativa L.)], and an un-mulched plot. At the time of CC conversion into mulch, the hairy vetch/oat mixture accumulated the highest aboveground biomass (5.30 t ha−1 of DM), while hairy vetch in pure stand accumulated the highest quantity of N (177 kg ha−1) and showed the lowest C/N ratio (12). The marketable pepper yield was higher in mulched than in conventional (on average 33.5, 28.9, 27.7 and 22.2 t ha−1 of FM for hairy vetch, subclover, hairy vetch/oat mixture, and conventional, respectively). Generally, the NO3–N content of the soil was minimum at CC sowing, slightly higher at pepper transplanting and maximum at pepper harvesting (on average 15.2, 16.8, and 23.3 mg NO3-N kg−1 of dry soil, respectively). The cumulative leachate was higher during the CC period (from October to April) than the pepper crop period (from April to September), on average 102.1 vs 66.1 mm over the years, respectively. The cumulative NO3–N leached greatly depended on the type of mulch and it was 102.3, 95.3, 94.7, and 48.2 kg ha−1 in hairy vetch, subclover, hairy vetch/oat mixture, and conventional, respectively. A positive linear correlation was found between the N accumulated in the CC aboveground biomass and the NO3–N leached during pepper cultivation (R 2 = 0.87). This research shows that winter legume cover crops, especially hairy vetch in pure stand, converted into dead mulch in spring could be used successfully for adding N to the soil and increasing the yield of the following pepper crop although the risks of N losses via leaching could be increased compared to an un-mulched soil. Therefore when leguminous mulches are used in the cultivation of a summer crop, appropriate management practices of the system, such as a better control of the amount of irrigation water and the cultivation of a graminaceous or a cruciferous catch crop after the harvesting of the summer crop, should be adopted in order to avoid an increase in NO3–N leaching.  相似文献   

20.
To date, the sustainability of wheat (Triticum aestivum)–soybean (Glycine max) cropping systems has not been well assessed, especially under Indian Himalayas. Research was conducted in 1995–1996 to 2004 at Hawalbagh, India to study the effects of fertilization on yield sustainability of irrigated wheat–soybean system and on selected soil properties. The mean wheat yield under NPK + FYM (farmyard manure) treated plots was ~27% higher than NPK (2.4 Mg ha−1). The residual effect of NPK + FYM caused ~14% increase in soybean yield over NPK (2.18 Mg ha−1). Sustainable yield index values of wheat and the wheat–soybean system were greater with annual fertilizer N or NPK plots 10 Mg ha−1 FYM than NPK alone. However, benefit:cost ratio of fertilization, agronomic efficiency and partial factor productivity of applied nutrients were higher with NPK + FYM than NPK, if FYM nutrients were not considered. Soils under NPK + FYM contained higher soil organic C (SOC), total soil N, total P and Olsen-P by ~10, 42, 52 and 71%, respectively, in the 0–30 cm soil layers, compared with NPK. Non-exchangeable K decreased with time under all treatments except NPK. Total SOC in the 0–30 cm soil layer increased in all fertilized plots. Application of NPK + FYM also improved selected soil physical properties over NPK. The NPK + FYM application had better soil productivity than NPK but was not as economical as NPK if farmers had to purchase manure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号