首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 461 毫秒
1.
Remediation of contaminated sediments remains a technological challenge because traditional approaches do not always achieve risk reduction goals for human health and ecosystem protection and can even be destructive for natural resources. Recent work has shown that uptake of persistent organic pollutants such as polychlorinated biphenyls (PCBs) in the food web is strongly influenced by the nature of contaminant binding, especially to black carbon surfaces in sediments. We demonstrate for the first time in a contaminated river that application of activated carbon to sediments in the field reduces biouptake of PCBs in benthic organisms. After treatment with activated carbon applied at a dose similar to the native organic carbon of sediment, bioaccumulation in freshwater oligochaete worms was reduced compared to preamendment conditions by 69 to 99%, and concentrations of PCBs in water at equilibrium with the sediment were reduced by greater than 93% at all treatment sites for up to three years of monitoring. By comparing measured reductions in bioaccumulation of tetra- and penta-chlorinated PCB congeners resulting from field application of activated carbon to a laboratory study where PCBs were preloaded onto activated carbon, it is evident that equilibrium sorption had not been achieved in the field. Although other remedies may be appropriate for some highly contaminated sites, we show through this pilot study that PCB exposure from moderately contaminated river sediments may be managed effectively through activated carbon amendment in sediments.  相似文献   

2.
The sorption kinetics and concentration of polychlorinated biphenyls (PCBs) in historically polluted sediment is modeled to assess a remediation strategy based on in situ PCB sequestration by mixing with activated carbon (AC). We extend our evaluation of a model based on intraparticle diffusion by including a biomimetic semipermeable membrane device (SPMD) and a first-order degradation rate for the aqueous phase. The model predictions are compared with the previously reported experimental PCB concentrations in the bulk water phase and in SPMDs. The simulated scenarios comprise a marine and a freshwater sediment, four PCB congeners, two AC grain sizes, four doses of AC, and comparison with laboratory experiments for up to 540 days of AC amendment slowly mixed with sediment. The model qualitatively reproduces the observed shifts in the PCB distribution during repartitioning after AC amendment but systematically overestimates the overall effect of the treatment in reducing aqueous and SPMD concentrations of PCBs by a factor of 2-6. For our AC application in sediment, competitive sorption of the various solutes apparently requires a reduction by a factor of 16 of the literature values for the AC-water partitioning coefficient measured in pure aqueous systems. With this correction, model results and measurements agree within a factor of 3. We also discuss the impact of the nonlinearity of the AC sorption isotherm and first-order degradation in the aqueous phase. Regular mixing of the sediment accelerates the benefit of the proposed amendment substantially. But according to our scenario, after AC amendment is homogeneously mixed into the sediment and then left undisturbed, aqueous PCB concentrations tend toward the same reduction after approximately 5 or more years.  相似文献   

3.
This work examines the effects of adding coke or activated carbon on the bioavailability of polychlorinated biphenyls (PCBs) in contaminated sedimentfrom South Basin at Hunters Point, San Francisco Bay. We show with 28-day sediment exposure tests that PCB bioaccumulation in a polychaete (Neanthes arenaceodentata) is reduced by 82% following 1-month contact of sediment with activated carbon and by 87% following 6-months contact of sediment with activated carbon. PCB bioaccumulation in an amphipod (Leptocheirus plumulosus) is reduced by 70% following 1-month contact of sediment with activated carbon and by 75% after 6-months contact of sediment with activated carbon. Adding coke had a negligible effect on reducing PCB bioaccumulation, probably because of the low specific surface area and the slow kinetics of PCB diffusion intothe solid coke particles. Reductions in congener bioaccumulation with activated carbon were inversely related to congener Kow, suggesting that the efficacy of activated carbon is controlled by the mass-transfer rate of PCBs from sediment and into activated carbon. We find that reductions in aqueous PCB concentrations in equilibrium with the sediment were similar to reductions in PCB bioaccumulation. While no lethality was observed following activated carbon addition, growth rates were reduced by activated carbon for the polychaete, but not for the amphipod, suggesting the need for further study of the potential impacts of activated carbon on exposed communities. The study suggests that treatment of the biologically active layer of contaminated sediments with activated carbon may be a promising in-situ technique for reducing the bioavailability of sediment-associated PCBs and other hydrophobic organic compounds.  相似文献   

4.
Activated carbon amendment was assessed in the laboratory as a remediation strategy for freshwater sediment contaminated with polychlorinated biphenyls (PCBs) from the Grasse River (near Massena, NY). Three end points were evaluated: aqueous equilibrium PCB concentration, uptake into semipermeable membrane devices (SPMDs), and 28-day bioaccumulation in the clam Corbicula fluminea. PCB uptake by water, SPMDs, and clams followed similar trends, with reductions increasing as a function of carbon dose. Average percent reductions in clam tissue PCBs were 67, 86, and 95% for activated carbon doses of 0.7, 1.3, and 2.5% dry wt, respectively. A biodynamic model that incorporates sediment geochemistry and dietary and aqueous uptake routes was found to agree well with observed uptake by C. fluminea in our laboratory test systems. Results from this study were compared to 28-day bioaccumulation experiments involving PCB-contaminated sediment from Hunters Point Naval Shipyard (San Francisco Bay, CA) and the clam Macoma balthica. Due to differences in feeding strategy, M. balthica deposit-feeds whereas C. fluminea filter-feeds, the relative importance of the aqueous uptake route is predicted to be much higher for C. fluminea than for M. balthica. Whereas M. balthica takes up approximately 90% of its body burden through sediment ingestion, C. fluminea only accumulates approximately 45% via this route. In both cases, results strongly suggest that it is the mass transfer of PCBs from native sediment to added carbon particles, not merely reductions in aqueous PCB concentrations, that effectively reduces PCB bioavailability and uptake by sediment-dwelling organisms.  相似文献   

5.
Five activated carbons (ACs) and two biochars were tested as amendments to reduce the availability of aged polychlorinated dibenzo-p-dioxin/dibenzofurans (PCDD/Fs) in two soils. All sorbents (ACs and biochars) tested substantially reduced the availability of PCDD/Fs measured by polyoxymethylene (POM) passive uptake and earthworm (E. fetida) biouptake. Seven sorbents amended at a level of 0.2 × soil total organic carbon (0.2X) reduced the passive uptake (physicochemical availability) of total PCDD/Fs in POM by 40% to 92% (or toxic equivalent by 48% to 99%). Sorbents with finer particle sizes or more macropores showed higher reduction efficiencies. The powdered regenerated AC and powdered coconut AC demonstrated to be the most effective and the two biochars also performed reasonably well especially in the powdered form. The passive uptake of PCDD/F in POM increased approximately 4 to 5 fold as the contact time between POM and soil slurry increased from 24 to 120 d while the efficacy of ACs in reducing the physicochemical availability remained unchanged. The reduction efficiencies measured by POM passive uptake for the regenerated AC were comparable to those measured by earthworm biouptake (bioavailability) at both dose levels of 0.2X and 0.5X. The biota-soil accumulation factor (BSAF) values for unamended soil ranged from 0.1 for tetra-CDD/F to 0.02 for octa-CDD/F. At both dose levels, the regenerated AC reduced the BSAFs to below 0.03 with the exception of two hexa-CDD/Fs. The reduction efficiencies measured by earthworm for coconut AC and corn stover biochar were generally less than those measured by POM probably due to larger particle sizes of these sorbents that could not be ingested by the worms.  相似文献   

6.
Two chemical approaches, Tenax extraction and matrix solid-phase microextraction (matrix-SPME), were compared to assess the bioavailability of hydrophobic contaminants from sediment. Hexachlorobiphenyl, DDE, permethrin, chlorpyrifos, and phenanthrene were individually spiked into two sediments differing in physical characteristics. Bioaccumulation was determined by exposing the oligochaete, Lumbriculus variegatus, to the spiked sediments. The rapidly desorbing fraction from Tenax extraction at 6 h and fiber concentration at 14 d from the matrix-SPME were compared for predicting bioaccumulation. Further, a comparison between laboratory-spiked and field-contaminated sediments was conducted. A regression between the rapidly desorbed sediment concentration at 6 h and the amount bioaccumulated across compounds and sediments described 94% of the variation in the data when phenanthrene was excluded. Phenanthrene was excluded because of complications due to a combination of biotransformation and rapid elimination during the sampling process. Contaminant accumulation by L. variegatus also correlated well with matrix-SPME fiber concentrations, accounting for 92% of the variation in the data, again excluding phenanthrene. Both chemical methods provided matrix- and chemical-independent estimations of bio-accumulation for hydrophobic contaminants without extensive biotransformation.  相似文献   

7.
Anaerobic reductive dehalogenation of commercial PCBs such as Aroclor 1260 has a critical role of transforming highly chlorinated congeners to less chlorinated congeners that are then susceptible to aerobic degradation. The efficacy of bioaugmentation with the dehalorespiring bacterium Dehalobium chlorocoercia DF1 was tested in 2-L laboratory mesocosms containing sediment contaminated with weathered Aroclor 1260 (1.3 ppm) from Baltimore Harbor, MD. Total penta- and higher chlorinated PCBs decreased by approximately 56% (by mass) in bioaugmented mesocosms after 120 days compared with no activity observed in unamended controls. Bioaugmentation with DF-1 enhanced the dechlorination of doubly flanked chlorines and stimulated the dechlorination of single flanked chlorines as a result of an apparent synergistic effect on the indigenous population. Addition of granulated activated carbon had a slight stimulatory effect indicating that anaerobic reductive dechlorination of PCBs at low concentrations was not inhibited by a high background of inorganic carbon that could affect bioavailability. The total number of dehalorespiring bacteria was reduced by approximately half after 60 days. However, a steady state level was maintained that was greater than the indigenous population of putative dehalorespiring bacteria in untreated sediments and DF1 was maintained within the indigenous population after 120 days. The results of this study demonstrate that bioaugmentation with dehalorespiring bacteria has a stimulatory effect on the dechlorination of weathered PCBs and supports the feasibility of using in situ bioaugmentation as an environmentally less invasive and lower cost alternate to dredging for treatment of PCB impacted sediments.  相似文献   

8.
Sediment pore water concentrations of polychlorinated biphenyls (PCBs) in a contaminated mudflat in San Francisco Bay, CA were determined by field-deployed polyethylene devices (PEDs). Sequential sampling of PEDs deployed in the field showed large differences in uptake rates and time to equilibrium compared to PEDs mixed with field-collected sediment in the laboratory. We demonstrate a modeling approach that involves the use of impregnated performance reference compounds (PRCs) and interpretation of the data either by PCB molar volume adjustment or environmental adjustment factors to measure pore water concentrations of 118 PCB congeners. Both adjustment methods predicted comparable sampling rates, and PCB pore water concentrations estimated by use of the molar volume adjustment method were similar to values analytically measured in pore waters from the laboratory and field. The utility of PEDs for sampling pore water in the field was evaluated at a tidal mudflat amended with activated carbon to sequester PCBs. Pore water concentrations decreased up to 60% within 18 months after activated carbon amendment, as compared to a mechanical-mixed control plot Results of this study illustrate PEDs provide an inexpensive, in situ method to measure total PCB contamination in sediment pore water using a small set of PRCs.  相似文献   

9.
In situ amendment of contaminated sediments using activated carbon (AC) is a recent remediation technique, where the strong sorption of contaminants to added AC reduces their release from sediments and uptake into organisms. The current study describes a marine underwater field pilot study in Trondheim harbor, Norway, in which powdered AC alone or in combination with sand or clay was tested as a thin-layer capping material for polycyclic aromatic hydrocarbon (PAH)-contaminated sediment. Several novel elements were included, such as measuring PAH fluxes, no active mixing of AC into the sediment, and the testing of new manners of placing a thin AC cap on sediment, such as AC+clay and AC+sand combinations. Innovative chemical and biological monitoring methods were deployed to test capping effectiveness. In situ sediment-to-water PAH fluxes were measured using recently developed benthic flux chambers. Compared to the reference field, AC capping reduced fluxes by a factor of 2-10. Pore water PAH concentration profiles were measured in situ using a new passive sampler technique, and yielded a reduction factor of 2-3 compared to the reference field. The benthic macrofauna composition and biodiversity were affected by the AC amendments, AC + clay having a lower impact on the benthic taxa than AC-only or AC + sand. In addition, AC + clay gave the highest AC recoveries (60% vs 30% for AC-only and AC + sand) and strongest reductions in sediment-to-water PAH fluxes and porewater concentrations. Thus, application of an AC-clay mixture is recommended as the optimal choice of the currently tested thin-layer capping methods for PAHs, and more research on optimizing its implementation is needed.  相似文献   

10.
This study presents the first field observations of polychlorinated biphenyls (PCB) in bacteria in oceanic waters. To contribute to the limited knowledge of what role bacteria play in the dynamics of hydrophobic organic contaminants (HOCs) in surface seawater, PCB concentrations were measured in bacteria (0.2-2 microm) collected at seven stations in the northern Barents Sea marginal ice zone (MIZ) and the central Arctic Ocean. Concentrations of individual PCB congeners in bacteria were 0.5-5 ng/g oc (organic carbon), which was as high as or higher than PCB concentrations in bulk particulate organic carbon (POC, "phytoplankton"; > 0.7 microm). Considering the relative biomasses of phytoplankton and bacteria, the amount of PCB in bacteria was generally 5-20% of that in phytoplankton, but at two stations the bacterial biomass contained more PCBs than the phytoplankton pool. This study further showed that efficient PCB uptake in bacteria may be described by an apparent equilibrium partitioning model with linear regressions between the organic-carbon-normalized partition coefficient and the octanol-water partition coefficient (log K(bact-oc)-log K(ow)).  相似文献   

11.
We collected urban soil samples impacted by polycyclic aromatic hydrocarbons (PAHs) from a sorbent-based remediation field trial to address concerns about unwanted side-effects of 2% powdered (PAC) or granular (GAC) activated carbon amendment on soil microbiology and pollutant biodegradation. After three years, total microbial cell counts and respiration rates were highest in the GAC amended soil. The predominant bacterial community structure derived from denaturing gradient gel electrophoresis (DGGE) shifted more strongly with time than in response to AC amendment. DGGE band sequencing revealed the presence of taxa with closest affiliations either to known PAH degraders, e.g. Rhodococcus jostii RHA-1, or taxa known to harbor PAH degraders, e.g. Rhodococcus erythropolis, in all soils. Quantification by real-time polymerase chain reaction yielded similar dioxygenases gene copy numbers in unamended, PAC-, or GAC-amended soil. PAH availability assessments in batch tests showed the greatest difference of 75% with and without biocide addition for unamended soil, while the lowest PAH availability overall was measured in PAC-amended, live soil. We conclude that AC had no detrimental effects on soil microbiology, AC-amended soils retained the potential to biodegrade PAHs, but the removal of available pollutants by biodegradation was most notable in unamended soil.  相似文献   

12.
Amendment of contaminated sediment with activated carbon (AC) is a remediation technique that has demonstrated its ability to reduce aqueous concentrations of hydrophobic organic compounds. The application of AC, however, requires information on possible ecological effects, especially effects on benthic species. Here, we provide data on the effects of AC addition on locomotion, ventilation, sediment avoidance, mortality, and growth of two benthic species, Gammarus pulex and Asellus aquaticus , in clean versus polycyclic aromatic hydrocarbon (PAH) contaminated sediment. Exposure to PAH was quantified using 76 μm polyoxymethylene passive samplers. In clean sediment, AC amendment caused no behavioral effects on both species after 3-5 days exposure, no effect on the survival of A. aquaticus , moderate effect on the survival of G. pulex (LC(50) = 3.1% AC), and no effects on growth. In contrast, no survivors were detected in PAH contaminated sediment without AC. Addition of 1% AC, however, resulted in a substantial reduction of water exposure concentration and increased survival of G. pulex and A. aquaticus by 30 and 100% in 8 days and 5 and 50% after 28 days exposure, respectively. We conclude that AC addition leads to substantial improvement of habitat quality in contaminated sediments and outweighs ecological side effects.  相似文献   

13.
As laboratory-based bioaccumulation methods are standardized and expanded to include other test species, kinetic studies assessing the major classes of contaminants with these species are needed to adequately select the standard duration for bioaccumulation tests. In the present study we measured the uptake (28-d exposure) of polychlorinated biphenyls (PCBs; total and selected congeners) from field-contaminated sediment in the oligochaete Lumbriculus variegatus, mayfly nymph Hexagenia spp., and fathead minnow Pimephales promelas. Depuration (25 d) of PCBs was measured in organisms that had been transferred to clean sediment after the 28-d exposure. Uptake and elimination of PCBs was rapid in L. variegatus and Hexagenia spp. Tissue residues reached steady-state concentrations within 28 d; elimination rates and biota-sediment accumulation factors (BSAFs) of the PCB congeners were not correlated with K(OW). Uptake and elimination rates of PCBs were slower in P. promelas, and it is not clear whether steady-state was reached in fish tissues. Elimination rates of the PCB congeners significantly decreased with increasing K(OW) in fish. The appropriateness of a 28-d exposure for measuring steady-state concentrations in tissue of the invertebrates was confirmed, but further study is required for fish.  相似文献   

14.
Single-walled carbon nanotubes (SWNT) have extremely high affinity for hydrophobic organic contaminants, considerably higher than natural or refractory (e.g., soot and detrital) carbon found in sediments. To evaluate the effect of sediment-associated SWNT on contaminant uptake from sediments by infaunal deposit feeders, we have conducted a comparative bioaccumulation study using two infaunal estuarine invertebrates. The deposit-feeding meiobenthic copepod Amphiascus tenuiremis and the deposit/suspension-feeding polychaete Streblospio benedicti were exposed to hydrophobic organic contaminants (HOCs) including polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls, and polybrominated diphenyl ethers for 14 days in the presence of sediment amended with (1) SWNTs, (2) NIST diesel soot, or (3) no carbon amendment. Coaddition of SWNT to sediments significantly reduced bioaccumulation of HOCs in S. benedicti; however, soot addition tended to increase the bioaccumulation of these same compounds in the polychaete worm. Bioaccumulation of HOCs from sediments by copepods (A. tenuiremis) was less dependent on black carbon addition to sediment; neither SWNT nor soot significantly impacted bioaccumulation of PAHs from sediment by this organism. Exposure of both copepods and polychaetes to radiolabeled (14C) SWNT in estuarine sediments revealed that these organisms did not assimilate these materials into their tissues, although S. benedicti did ingest 14C-SWNT, as fecal rods from this organism contained identical 14C activity as that of the sediment to which the worms were exposed.  相似文献   

15.
Bioaccumulation of perfluoroalkyl sulfonates, perfluorocarboxylates, and 2-(N-ethylperfluorooctane sulfonamido) acetic acid (N-EtFOSAA) from laboratory-spiked and contaminated field sediments was assessed using the freshwater oligochaete, Lumbriculus variegatus. Semistatic batch experiments were conducted to monitor the biological uptake of these perfluorochemicals (PFCs) over 56 days. The elimination of PFCs was measured as the loss of PFCs in L. variegatus exposed to PFC-spiked sediment for 28 days and then transferred to clean sediment. The resultant data suggest that PFCs in sediments are readily bioavailable and that bioaccumulation from sediments does not continually increase with increasing perfluorocarbon chain length. Perfluorooctane sulfonate (PFOS) and perfluorononanoate were the most bioaccumulative PFCs, as measured by laboratory-based estimated steady-state biota sediment accumulation factors (BSAFs) and BSAFs measured using contaminated field sediments. Elimination rate constants for perfluoroalkyl sulfonates and perfluorocaroboxylates were generally smaller than those previously measured for other organic contaminants. Last, a PFOS precursor, N-EtFOSAA, accumulated in the worm tissues and appeared to undergo biotransformation to PFOS and other PFOS precursors. This suggests that N-EtFOSAA, which has been detected in sediments and sludge often at levels exceeding PFOS, may contribute to the bioaccumulation of PFOS in aquatic organisms.  相似文献   

16.
The redox status of subsurface aqueous systems is controlled by the reactivity of solid redox-sensitive species and by the inflow of such species dissolved in groundwater. The reactivity toward molecular oxygen (O2) of solid reductants present in three particle size fractions of sediments from a pristine aquifer was characterized during 54 days. The stoichiometric relationships between carbon dioxide (CO2) production and O2 consumption was used in combination with sulfate production to discriminate between the contributions of sedimentary organic matter (0-87%), pyrite (6-100%), and siderite (0-43%) as the dominant reductants. The observed simultaneous oxidation of these reductants indicates that they are reactive on the same time scales. The measured reduction capacity 18-84 micromol O2/g) ranged from 8 to 42% of the total reduction capacity present as pyrite and organic carbon in the total sediment fraction (<2 mm). Fine fractions (<63 microm) were 10-250 times more reactive than their corresponding total fractions. Oxygen consumption rates decreased continuously during carbonate buffered conditions, due to a decreasing reactivity of reductants. Acidification accelerated pyrite oxidation but impeded SOM respiration. Our findings indicate that the geological history of aquifer sediments affects the amounts of organic matter, pyrite and siderite present, while environmental conditions, such as pH and microbial activity, are important in controlling the reactivity of these reductants. These controls should be considered when assessing the natural reduction activity of aquifer sediments in either natural or polluted systems.  相似文献   

17.
造纸污泥交替式好氧厌氧堆肥实验   总被引:8,自引:0,他引:8  
调节造纸污泥的水分和C/N比,经过为期50d的交替好氧厌氧堆肥处理,污泥有机质发生降解,TN、TP和TK含量都呈上升趋势,挥发性固体和有机碳分别达到60%和30%的稳定状态,堆肥的种子发芽率达到95%以上,大肠杆菌数低于国家卫生标准,实现造纸污泥无害化、稳定化和减量化的要求.腐熟的污泥堆肥成为高价值的农用产品.  相似文献   

18.
It is unclear whether accumulation of sediment-bound chemicals in benthivorous fish depends on the degree of sequestration in the sediment like it does for invertebrates. Here, we report on the potential of slow and fast desorbing sediment-bound polychlorobiphenyl (PCB) fractions for accumulation in carp (Cyprinus carpio) in lake enclosures treated with different nutrient doses. Routes of PCB uptake were quantitatively evaluated for 15 PCBs (log Kow range 5.6-7.8) using model analysis. Fast-desorbing PCB fractions in the sediment were defined as the ratio of 6-h Tenax-extractable to (total) Soxhlet-extractable concentrations. These fractions varied between 4 and 22% and did not show a clear trend with log Kow. However, bioaccumulation of PCBs in carp correlated much better with Tenax-extractable concentrations than with total-extractable concentrations. Nutrient additions in the enclosures had a positive effect on PCB accumulation. Model results showthat PCB uptake in carp can be explained from (1) uptake through invertebrate food, (2) uptake from fast-desorbing fractions in ingested sediments, and (3) uptake from water, where PCBs are in partitioning equilibrium with fast-desorbing fractions. The main implication of this research is that fast-desorbing PCB fractions in sediments have great predictive potential for bioaccumulation in benthivorous fish.  相似文献   

19.
Steady-state monochloramine reduction in fixed-bed reactors (FBRs) was quantified on five types of granular activated carbon (GAC) using two background waters-one natural source water (LAW) containing 2.5-3.5 mg/L organic carbon and one synthetic organic-free water (NW). While more monochloramine was reduced at steady-state using NW compared to LAW for each GAC and empty-bed contact time studied, the differences in removal varied considerably among the GACs tested. Physical characterization of the GACs suggested that the degree of interference caused by natural organic matter (NOM) increased with increasing GAC surface area contained within pores greater than 2 nm in width. Acid/base and electrostatic properties of the GACs were not found to be significant in terms of NOM uptake, which indicated that size exclusion effects of the GAC pores overwhelmed the impact of the GAC surface chemistry. Therefore, selection of GAC to limit the impact of NOM on monochloramine reduction in FBRs should be based on pore size distribution alone, with the impact of NOM decreasing with decreasing mesoporosity and macroporosity.  相似文献   

20.
The present study examines the role of humic acid, as a representative of dissolved organic matter, in Cd(II), Cu(II), and Pb(II) speciation and biouptake by green microalgae. Cellular and intracellular metal fractions were compared in the presence of citric and humic acids. The results demonstrated that Cd and Cu uptake in the presence of 10 mg L(-1) humic acid was consistent with that predicted from measured free metal concentrations, while Pb biouptake was higher. By comparing Cd, Cu, and Pb cellular concentrations in the absence and presence of humic acid, it was found that the influence of the increased negative algal surface charge, resulting from humic acid adsorption, on cellular metal was negligible. Moreover, the experimental results for all three metals were in good agreement with the ternary complex hypothesis. Given that metal has much higher affinity with algal sites than humic acid adsorbed to algae, the contribution of the ternary complex to metal bioavailability was negligible in the case of Cd (II) and Cu (II). In contrast, the ternary complex contributed to over 90% of total cellular metal for Pb(II), due to the comparable affinity of Pb to algal sites in comparison with humic acid adsorbed to algae. Therefore, the extension of the biotic ligand model by including the formation of the ternary complex between the metal, humic acid, and algal surface would help to avoid underestimation of Pb biouptake in the presence of humic substances by green algae Chlorella kesslerii.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号