首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 62 毫秒
1.
从航空遥感图像中自动提取主要道路   总被引:35,自引:2,他引:35  
文贡坚  王润生 《软件学报》2000,11(7):957-964
如果能自动地从航空遥感图像中提取出道路网,将会简化城市地物目标的分类和测量过程.该文根据城市主要道路在图像中的特性进行了模型化处理,进而提出了基于直线的、自动提取的方法.算法重点考虑到成像过程中必然引入的各种噪声,用高斯分布函数模糊化直线参数,使提取具有良好的稳健性.算法中的参数选择都是通过理论分析所得,因此,提取过程实现了自动化.实验结果表明,该方法能够从实际航空遥感图像中提取出主要道路网.  相似文献   

2.
高分辨率遥感影像上道路中心线的半自动提取   总被引:5,自引:0,他引:5  
提出一种半自动的基于活动窗口线段特征匹配来提取高分辨率遥感影像上道路中心线的方法.通过用户在道路中心线上输入起始点,采用定义活动模板窗、阈值分割、线段特征匹配和改进的SSDA,实现了道路中心线的自动跟踪.另外,该方法还允许在跟踪过程中加入少量人工干预来处理某些匹配失败的情况,提高了实用性.对0.61m分辨率QuickBird影像和1m分辨率IKONOS影像进行道路提取的实验表明:该方法能够快速、准确地提取出主要道路的中心线,对噪声的干扰具有良好的鲁棒性.  相似文献   

3.
遥感图像自动道路提取方法综述   总被引:15,自引:1,他引:15  
吴亮  胡云安 《自动化学报》2010,36(7):912-922
自动道路提取是遥感图像识别的重要研究领域. 实现自动化、智能化、可靠准确的图像道路提取对地理信息技术发展具有重要的应用价值和意义. 道路的物理属性和功能形成了道路的辐射特征、几何特征、拓扑特征和背景特征. 以该四类特征为线索, 介绍了自动道路提取的典型方法, 侧重于分析四类特征在道路提取中作用和应用方式. 简要介绍了自动道路提取的评估方法和准则, 列举了主流的道路提取软件和遥感图像片源, 展望了该领域的发展方向.  相似文献   

4.
一种高分辨率遥感图像中居民区道路提取方法   总被引:1,自引:1,他引:0  
针对在遥感图像中提取居民区道路易受房屋等人工建筑干扰的问题,基于数学形态学提出了一种可以去除大量建筑物干扰,从而有效提取出居民区道路的算法.算法首先用顶帽变换和底帽变换对灰度图像进行了对比度争强,然后利用道路和建筑物之间的形态梯度以及道路特征对道路和建筑物进行分离,最后利用形态重建的方法得到了居民区道路网.仿真实验表明,区域中的大部分建筑物噪声被成功去除,算法是有效和可行的.  相似文献   

5.
SAR图象中道路网络提取算法研究   总被引:1,自引:0,他引:1  
提出了一种利用遗传算法从高分辨率SAR图象中提取道路网络的方法。高分辨率SAR图象中目标背景复杂,同时由于受相干斑噪声的影响,很难直接从原始图象数据中提取道路特征。首先利用模糊C均值对滤波后的图象进行聚类,将道路类象素从图象中分离出来;根据聚类结果及道路特征建立数学模型,利用遗传算法搜索全局最优道路。实验结果表明该方法可以很好地从SAR图象中提取道路网络。  相似文献   

6.
SAR图像自动道路提取   总被引:10,自引:4,他引:10       下载免费PDF全文
提出了一种新的快速有效的低分辨率SAR图像自动道路提取算法。算法使用道路特征检测算子检测道路边缘,利用一系列模板进行边缘像素的标定和短线段的连接,最后使用动态规划技术进行道路曲线段的连接。使用低分辨RadarSat SAR图像进行实验,实验结果证明了该算法的有效性。  相似文献   

7.
基于遗传算法的SAR图像自动道路提取   总被引:1,自引:0,他引:1       下载免费PDF全文
为了有效地进行SAR图像道路目标自动提取,提出了一种基于遗传算法的SAR图像道路目标自动提取方法。该方法首先通过Frost滤波器去相干斑;然后利用乘性Duda线特征检测算子进行线特征检测,接着利用Radon变换进行线基元提取,再利用遗传算法进行线基元连接;最后利用蛇模型调整道路位置并进行道路鉴别。在星载和机载SAR图像上进行的实验以及性能定量评估结果证明了该方法的有效性。  相似文献   

8.
首先讨论了如何利用指纹卡中边框的结构特性 ,将原始图象分割成 10块区域 ,并使其中的每块区域均含有一枚指纹。然后分析每块区域中指纹区的灰度分布、面积等特性。经过对 10 0人的 10 0 0枚指纹图象的自动无损提取实验 ,准确率由原来的 95 %达到现在的 96 .5 %  相似文献   

9.
为了提高单时相遥感图像道路提取的准确度,提出一种基于特征融合的道路提取方法。首先,提取已配准好的多时相SPOT图像直线段特征和角点特征,然后,对得到的特征进行融合判断,从特征融合结果中提取近似平行线,最后进行道路拟合。本文对相位编组道路段提取方法进行了改进,引入基于灰度SUSAN的角点特征信息,提高了道路段提取的准确性。文章最后给出了实验结果。  相似文献   

10.
首先采用模板匹配、特征抽取等方法提取城市和道路的标识,这些标识对后面的道路的提取有着重要的作用;然后根据道路的等级,在颜色基础上利用道路的特征分层提取道路图层;最后对道路进行细化,依据城市与道路,各种道路间的关系以及道路的特征建立一系列的判据,检查道路的合理性,并产生相应的策略对道路进行反馈处理,实现道路的全自动提取.实验结果表明了该方法的有效性.  相似文献   

11.
Automatic Road Extraction from Aerial Images   总被引:4,自引:0,他引:4  
The paper presents a knowledge-based method for automatic road extraction from aerial photography and high-resolution remotely sensed images. The method is based on Marr's theory of vision, which consists of low-level image processing for edge detection and linking, mid-level processing for the formation of road structure, and high-level processing for the recognition of roads. It uses a combined control strategy in which hypotheses are generated in a bottom-up mode and a top-down process is applied to predict the missing road segments. To describe road structures a generalized antiparallel pair is proposed. The hypotheses of road segments are generated based on the knowledge of their geometric and radiometric properties, which are expressed as rules in Prolog. They are verified using part–whole relationships between roads in high-resolution images and roads in low-resolution images and spatial relationships between verified road segments. Some results are presented in this paper.  相似文献   

12.
道路是现代交通的主要组成部分,对于管理和更新地理信息系统数据库中的道路信息非常重要.目前,自动提取道路网络的主要数据源为遥感图像数据,但随着近年来遥感影像的地面分辨率不断提高,图像中地物信息愈加丰富,对图像中道路信息的提取难度也随之增大.文章主要展开一种利用机器学习对高分辨率遥感图像的道路提取研究.首先对高分辨遥感图进...  相似文献   

13.
高分辨率遥感影像道路提取技术研究与展望   总被引:3,自引:0,他引:3  
对道路特征提取的基本思想和方法进行了探讨,对国内外最新研究状况进行了较全面的综述,介绍了具有代表性的特征提取算法,并对道路特征提取的进一步发展提出了分析和展望.  相似文献   

14.
在遥感影像上,道路被认为是颜色、纹理、形状相似的狭长线状目标,基于此特征可知,整个道路网在影像上会呈现非常显著的特征,极易引起人眼的注意,我们称之为感兴趣区域。感兴趣区域是场景中最能引起用户兴趣、体现图像主要内容的区域,视觉认知理论的研究表明:通过视觉注意机制可以模拟人眼的观察过程,找出遥感影像上的显著区域。本文提出应用视觉注意机制辅助遥感影像道路网提取的思想,通过对影像的显著区域进行分析和处理,得到最终的道路网。对比实验表明该算法可以有效的提高道路网提取的准确率和完整性。  相似文献   

15.
针对高分辨率遥感影像道路提取结果不完整、边界质量差的问题,提出基于EDRNet模型的遥感影像道路提取方法。利用残差网络构建道路提取模型EDR1,保留道路的细节信息并加速网络收敛。通过融合多尺度、多层次的道路特征信息,设计道路提取结果优化模型EDR2。在此基础上,利用混合损失函数,提高道路提取的完整度。实验结果表明,EDRNet道路提取方法在马萨诸塞州道路数据集上的召回率、精确率和F1-score指标分别达到了84.4%、81.7%及83.0%,其结果完整且准确。  相似文献   

16.
针对高分辨率遥感影像中道路提取存在的特征利用问题,提出一种基于改进的K-means算法的道路提取方法。首先根据遥感影像的具体场景进行相应的预处理;在此基础上,利用改进的K-means算法融合道路的光谱特征和纹理特征对图像进行分类,得到初始道路区域;然后利用道路的几何特征滤除非道路区域;最后采用数学形态学方法完善道路信息,得到最终结果。实验结果表明,该方法能实现复杂场景中道路提取,并拥有较好的效果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号