首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Low-energy proton irradiation effects on GaAs/Ge solar cells   总被引:1,自引:0,他引:1  
This paper reports the low-energy proton irradiation effects on GaAs/Ge solar cells for space use. The proton irradiation experiments were performed with a fluence of 1.2×1013 cm−2, energies ranging from 0.1 to 3.0 MeV. The results obtained demonstrate that the irradiation with a proton energy of 0.3 MeV gives rise to the most degradation rates of Isc, Voc and Pmax of the solar cells with no coverglass, which is related to the proton irradiation-induced vacancies near the pn junction in GaAs/Ge cells. The degradation rates of Isc, Voc and Pmax of the solar cells with coverglass increase as the proton energy increases due to the cascade ions induced by collision processes. It is found that the coverglass has an obvious protection effect against the irradiation with the proton energy below 0.5 MeV.  相似文献   

2.
This paper reports the high-energy proton irradiation effects on GaAs/Ge space solar cells. The solar cells were irradiated by protons with energy of 5–20 MeV at a fluence ranging from 1×109 to 7×1013 cm−2, and then their electric parameters were measured at AM0. It was shown that the Isc, Voc and Pmax degrade as the fluence increases, respectively, but the degradation rates of Isc, Voc and Pmax decrease as the proton energy increases, and the degradation is relative to proton irradiation-induced defect Ec−0.41 eV in irradiated GaAs/Ge cells.  相似文献   

3.
4.
The photocatalytic degradation of four reactive dyes using TiO2 was investigated in suspended and immobilized systems under solar irradiation. Batch degradation experiments were carried out at initial concentrations ranging from 25 to 100 mg l−1 and at a catalyst loading of 0.5–1 g l−1. The studies on batch photocatalytic degradation of four dyes, showed about 30–70% colour removal depending on the initial dye concentration, dye structure (functional group and reactivity of dyes) and the amount of catalyst. The thin film immobilized surface photoreactor was able to give nearly 90–98% colour removal depending on the initial concentration and exposure time. Flow rate has noticeable effect on colour removal particularly at higher concentration (100 mg l−1). High colour removals obtained with solar radiation indicated effectiveness of this process and its potential for practical application.  相似文献   

5.
Degradation modeling of InGaP/GaAs/Ge triple-junction (3J) solar cells subjected to proton irradiation is performed with the use of a one-dimensional optical device simulator, PC1D. By fitting the external quantum efficiencies of 3J solar cells degraded by 30 keV, 150 keV, 3 MeV, or 10 MeV protons, the short-circuit currents (ISC) and open-circuit voltages (VOC) are simulated. The damage coefficients of minority carrier diffusion length (KL) and the carrier removal rate of base carrier concentration (RC) of each sub-cell are also estimated. The values of ISC and VOC obtained from the calculations show good agreement with experimental values at an accuracy of 5%. These results confirm that the degradation modeling method developed in this study is effective for the lifetime prediction of 3J solar cells.  相似文献   

6.
A pesticide (Vydine) considered priority substances by the Jordanian environment ministry and dissolved in water at 25 mg L−1 (or at maximum water solubility) has been degraded at solar pilot plant scale using direct solar UV-light, solar UV combined with H2O2 or Fe(II) and solar photo-Fenton. Two different solar irradiation conditions (med day irradiation under clear sky and late hour irradiation under clear sky) have been tested and discussed, using mainly pesticide concentration, TOC mineralization, COD removal and BOD for comparison of treatment effectiveness. A cute toxicity assays were also employed for evaluating the photocatalytic treatments, and comparison between these results. Direct solar UV photolysis is less efficient in term of pesticide degradation than other AOP’s. In contrast, solar photo-Fenton reaction produced higher pesticide degradation in a shorter time (40 min was sufficient for 88% pesticide removal with 20 mg L−1 H2O2 and 20 mg L−1 Fe (II)). In these conditions, the BOD5 was increased from zero for pure pesticide solution to 54 mg O2/L and acute toxicity was decreased from 19 to 6 toxicity unit.  相似文献   

7.
An experimental facility was developed to asses in situ the degradation of crystalline silicon solar cells, fabricated by the Solar Energy Group of the National Atomic Energy Commission (CNEA), by measuring the current–voltage characteristic curve. The cells were irradiated with 10 MeV protons and fluences between 108 and 1013 p/cm2, using an external beam of the linear tandem accelerator TANDAR, at CAC-CNEA. Furthermore, theoretical simulations were performed to establish the relation between the variation of the electrical parameters and the degradation of the lifetime of minority carriers in the base. The damage constant for 10 MeV proton irradiated silicon solar cells of n+–p–p+ structure and 1 Ω cm base resistivity was determined. Finally, a proposal of a new model of radiation damage for silicon solar cells is discussed.  相似文献   

8.
The degradation effects of the GaInP/GaAs/Ge triple-junction solar cells irradiated by <200 keV protons are investigated on the basis of the spectral response analysis and measurements of electric property. The experimental results show that with increasing proton fluence Isc, Voc and Pmax decrease obviously. The proton energy exhibits an important influence on the degradation effects of the triple-junction cells dependent on the proton penetration range in the cells. As the proton energy is lower than 100 keV, irradiation-induced damage occurs in the top cell, while the irradiation with proton energy higher than 100 keV causes damage mainly in the middle sub-cells. Comparing the changes in the electrical properties of the triple-junction cells, a conclusion can be made that the GaAs middle sub-cell plays a major role in leading to more severe degradation. In this case, the 170 keV protons are suggested to be used to evaluate the performance of the GaAs triple-junction solar cells, for they can produce more severe degradation effects.  相似文献   

9.
The main objective of the present study was to assess the photocatalytic degradation over TiO2 of an aqueous solution containing 20 mg L−1 of the antibiotic Oxytetracycline (OTC) using simulated solar radiation, seconded by a solar radiation experiment carried out in a pilot plant equipped with Compound Parabolic Collectors (CPCs) under the optimal conditions found in preliminary lab-scale experiments. These comprehended a set of 1 L aqueous experiments with TiO2 loads ranging from 0.1 to 0.5 g L−1 starting from different initial pH values. These experiments were carried out in a Solarbox equipped with a 1000 W Xe-OP lamp. OTC degradation was followed by HPLC-DAD, while its mineralization was followed by the removal of Total Organic Carbon.Results suggested that 0.5 g L−1 of TiO2 with no initial pH adjustment (pH ∼ 4.4) was the best combination for the removal of both OTC (100% after 40 min of irradiation; 7.5 kJ L−1 of UV dose) and TOC (>90% after 180 min of irradiation; 38.3 kJ L−1 of UV dose). Under these conditions, the BOD5/COD ratio rose from almost 0 to nearly 0.5, showing a remarkable improvement in biodegradability, while inhibition percentage of bioluminescence of Vibrio fischeri after 15 min of exposition measured by Microtox® decreased significantly from 35% down to 7%. A scheme of the OTC degradation pathway is proposed, based on the results obtained from this particular experiment.The solar photocatalytic experiment done under the same conditions was carried out in a solar pilot plant equipped with CPCs. OTC and TOC removal was followed as a function of accumulated UV energy entering the reactor. Results showed a 100% OTC and almost 80% TOC removal with 1.8 kJ L−1 and 11.3 kJ L−1 of photo treatment energy, respectively.  相似文献   

10.
High-energy proton irradiation (380 keV and 1 MeV) on the electrical properties of CuInSe2 (CIS) thin films has been investigated. The samples were epitaxially grown on GaAs (0 0 1) substrates by Radio Frequency sputtering. As the proton fluence exceeded 1×1013 cm−2, the carrier concentration and mobility of the CIS thin films were decreased. The carrier removal rate with proton fluence was estimated to be about 1000 cm−1. The electrical properties of CIS thin films before and after irradiation were studied between 80 and 300 K. From the temperature dependence of the carrier concentration in CIS thin films, we found ND=9.5×1016 cm−3, NA=3.7×1016 cm−3 and ED=21 meV from the fitting to the experimental data on the basis of the charge balance equation. After irradiation, a defect level was created, and NT=1×1017 cm−3 for a fluence of 3×1013 cm−2, NT=5.7×1017 cm−3 for a fluence of 1×1014 cm−2 and ET=95 meV were also obtained from the same fitting. The new defect, which acted as an electron trap, was due to proton irradiation, and the defect density was increased with proton fluence.  相似文献   

11.
The photodegradation of distillery effluent has been studied for removal of colour and COD reduction in the presence of solar radiation. The influence of experimental parameters such as H2O2 concentration dosage, effluent COD concentration, TiO2 catalyst and pH on colour and COD removal efficiency through solar photochemical process has been investigated. Maximum colour removal of the distillery effluent achieved was 79% at an H2O2 concentration of 0.3 M, pH 6, effluent COD concentration of 500 ppm and catalyst dosage of 0.1 g/L. The TiO2/H2O2 system seems to be more efficient in comparison to the synergetic action that appears when using H2O2 and TiO2. The photocatalytic degradation process using solar light as an irradiation source showed potential application for the colour removal of the distillery effluent treatment. Solar radiation can be an considered as an alternative, effective and economic energy carrier for the treatment of industrial effluent.  相似文献   

12.
The present study explored first time the better radiation tolerance of gallium-doped silicon solar cells as compared to conventional boron-doped silicon solar cells after heavy fluence of 1 MeV electron irradiation. One of the approaches to improve the end of life of silicon solar cells is by increasing the effective base carrier concentrations. Analysis of the carrier removal rate RC in boron, gallium and aluminum-doped Si solar cells showed that carrier removal effects can be partially offset by using gallium as dopant instead of boron.  相似文献   

13.
Heteropoly acids have been employed to increase the proton conductivity of phosphoric acid (PA) doped polymer membranes for high temperature polymer electrolyte membrane fuel cells (HT-PEMFCs). In this work, we develop a new composite membrane based on phosphotungstic acid (PWA) doped polyethersulfone-polyvinylpyrrolidone (PES-PVP) matrix, forming PWA/PES-PVP composite membrane for HT-PEMFCs. The homogeneous distribution of PWA on the PES-PVP membrane enhances its mechanical strength. In addition, there is a strong interaction between PWA and PA that is confirmed experimentally by the attenuated total reflectance Fourier Transform Infrared spectroscopy and semi-empirical quantum mechanics calculation. This enhances not only the PA uptake but also the proton conductivity of the PWA/PES-PVP composite membrane. 1H nuclear magnetic resonance spectroscopy results elucidate that the high proton conductivity of the PA doped PWA/PES-PVP membranes is due to their higher proton content and mobility compared to the pristine PA doped PES-PVP membrane. The best results are observed on the PES-PVP composite membrane with addition of 5 wt% PWA, reaching proton conductivity of 1.44 × 10?1 S cm?1 and a peak power density of 416 mW cm?2 at 160 °C and anhydrous conditions. PWA additives increase the proton conductivity and cell performance, demonstrating significantly positive effects on the acid-base composite membranes for high temperature polymer electrolyte membrane fuel cell applications.  相似文献   

14.
The hydrogen plasma passivation effects of MOCVD-grown GaAs solar cell on Si substrate have been studied in detail. To get a more reproducible increase of conversion efficiency and test the thermal stability of the plasma-exposed GaAs/Si solar cell, both the plasma exposure and post-passivation annealing conditions were optimized. Annealing the H2 plasma passivated GaAs/Si solar cell at 450°C in AsH3/H2 ambient seems a very essential parameter to restore the carrier concentration, especially, without losing the beneficial effects of H incorporation into GaAs on Si. For the H2 plasma passivated GaAs/Si solar cell, a highest conversion efficiency of 18.3% was obtained compared with that of the as-grown cell (16.6%) due to the H passivation effects on nonradiative recombination centers, which increased the minority carrier lifetime.  相似文献   

15.
A new silicon solar cell structure is presented in which the p–n junction is formed by alloying aluminum with n-type silicon, and where this p–n junction is located at the back (unilluminated) side of the cell. With a phosphorus front diffusion, the resultant n+np+ structure has been implemented using dendritic web silicon substrates which are 100 μm thick and doped with antimony to 20 Ω cm. Such a structure eliminates shunting of the p–n junction, provides an effective front surface field, enables a high minority carrier lifetime in the base, and is immune to light-induced degradation. Using only production-worthy, high-throughput processes, aluminum alloy back junction dendritic web cells have been fabricated with efficiencies up to 14.2% and with corresponding minority carrier (hole) lifetime in the base of 115 μs.  相似文献   

16.
In this work, we demonstrate that an efficient purification method of silicon wafers where iterative sequences were used. Each sequence consists of forming porous silicon (PS) on both sides of the samples, followed by thermal annealing in an infrared furnace under N2/SiCl4 ambient. Improvements of the electronic parameters were obtained by optimizing the heat treatments temperatures and the number and duration of the iteration sequences. Best results were obtained for temperatures below 980 °C and for three sequences of 20 min each one. After three sequences the mobility of the majority carrier improved from 94 cm2 V−1 s−1 (for untreated wafer) to about 374 cm2 V−1 s−1. The observed results were explained taking into account the transport properties of the impurities in the porous media and their concentration at the walls at each iteration. It was found that short iterative sequences give almost the same results than one long sequence duration. Silicon solar cells based on iterative gettered silicon wafers exhibit an increase in the short-circuit current and the open-circuit voltage. This fact seems to be important to ameliorate solar grade silicon (SGS) based solar cells performances.  相似文献   

17.
In this paper, the stimulated recovery of a proton exchange membrane (PEM) fuel cells after natural degradation has been investigated. The performance degradation of a 63-cell PEM fuel cell stack over a storage interval of 40,000 h at temperature 24 °C and relative humidity 65% was analyzed by static and dynamical tests. The average cell voltage degradation rate was 309 μV h−1, averaged over a range of currents. The performance was then partially recovered by application of a high frequency pulsing procedure after which the effective average degradation rate (from the commencement of storage to after the recovery) was approximately 170 μV h−1. This indicates the existence of both recoverable and irrecoverable degradations in the fuel cell. Furthermore, the equivalent circuit model and membrane resistance were used to investigate the degradation mechanisms, suggesting that the natural degradation of the fuel cell is mainly caused by the increase of the resistance, which is most likely caused by membrane dehydration.  相似文献   

18.
A mechanism of the anomalous increase of the short-circuit current of n+–p–p+ silicon space solar cells under high fluence of the high-energy 10 MeV protons or 1 Mev electrons is proposed. In distinction to other models this mechanism takes place as a result of the conversion of conductivity type and increased minority carrier lifetime with respect to that of majority carriers. This mechanism occurs in solar cells with deep centers, whose energy level is close to the middle of the band gap.  相似文献   

19.
The present study investigates the use of solar heterogeneous photocatalysis (TiO2) for the destruction of [D-Leu]-Microcystin-LR, powerful toxin of widespread occurrence within cyanobacteria blooms. We extracted [D-Leu]-Microcystin-LR from a culture of Microcystis spp. and used a flat plate glass reactor coated with TiO2 (Degussa, P25) for the degradation studies. The irradiance was measured during the experiments with the aid of a spectroradiometer. After the degradation experiments, toxin concentrations were determined by HPLC and mineralization by TOC analyses. Acute and chronic toxicities were quantified using mice and phosphatase inhibition in vitro assays, respectively. According to the performed experiments, 150 min were necessary to reduce the toxin concentration to the WHO’s guideline for drinking water (from 10 to 1 μg L?1) and to mineralize 90% of the initial carbon content. Another important finding is that solar heterogeneous photocatalysis was a destructive process indeed, not only for the toxin, but also for the other extract components and degradation products generated. Moreover, toxicity tests using mice have shown that the acute effect caused by the initial sample was removed. However, tests using the phosphatase enzyme indicated that it may be formed products capable of inducing chronic effects on mammals. The performed experiments indicate the feasibility of using solar heterogeneous photocatalysis for treating contaminated water with [D-Leu]-Microcystin-LR, not only due to its destruction, but also to the significant removal of organic matter and acute toxicity that can be achieved.  相似文献   

20.
Silicon thin films with different crystalline volume fractions have been deposited at different power and pressure conditions. Structural properties of the films have been investigated. The effects of crystalline volume fractions and grain sizes on the degradation of photoconductivity have been studied. Single-junction solar cells have been fabricated with protocrystalline and nanocrystalline Si as absorber layer. Protocrystalline silicon solar cells show less than 1% degradation upto 50 h of light soaking. Then the cells degrade upto 500 h and thereafter become steady. Nanocrystalline solar cells show degradation initially and become steady after 10 h of light soaking. Using protocrystalline silicon as absorber layer the solar cell efficiency degrades 9% before stabilization, whereas using nanocrystalline silicon as absorber layer (Xc~65%) the solar cell efficiency degrades 2.9%. Stabilized efficiency of the second type of cell is better than that of the first cell, but initial efficiency is higher for the first cell (η=7.1%).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号