首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lab scale and pot experiments were conducted to compare the effects of synthetic chelators and low molecular weight organic acids (LMWOA) on the phytoextraction of multi-contaminated soils by two ecotypes of Sedum alfredii Hance. Through lab scale experiments, the treatment dosage of 5 and 10 mM for synthetic chelators and LMWOA, respectively, and the treatment time of 10 days were selected for pot experiment. In pot experiment, the hyperaccumulating ecotype (HE) was found more tolerant to the metal toxicity compared with the non-hyperaccumulating ecotype (NHE). EDTA for Pb, EDDS for Cu, and DTPA for Cu and Cd were found more effective to enhance heavy metal accumulation in the shoots of S. alfredii Hance. Compared with synthetic chelators, the phytoextraction ability of LMWOA was lesser. Considering the strong post-harvest effects of synthetic chelators, it is suggested that higher dosage of LMWOA could be practiced during phytoextraction, and some additional measures could also be taken to lower the potential environmental risks of synthetic chelators in the future studies.  相似文献   

2.
Hazardous heavy metal pollution of soils is an increasingly urgent problem all over the world. The zeolite as a natural amendment has been studied extensively for the remediation of hazardous heavy metal-polluted soils with recycling. But its theory and application dose are not fully clear. This paper reviews the related aspects of theory and application progress for the remediation of hazardous heavy metal-polluted soils by natural zeolite, with special emphasis on single/co-remediation. Based on the comments on hazardous heavy metal behavior characteristics in leaching and rhizosphere and remediation with zeolite for heavy metal-polluted soils, it indicated that the research of rhizosphere should be strengthened. Theory of remediation with natural zeolite could make breakthroughs due to the investigation on synthetic zeolite. Co-remediation with natural zeolite may be applied and studied with more prospect and sustainable recycling.  相似文献   

3.
The present work concerns the distribution and mobility of heavy metals (Fe, Mn, Cu, Zn and Cd) in the surrounding soils of a mine site and their transfer to wild flora. Thus, soils and plants were sampled from a mining valley in NW Madrid (Spain), and total and extractable heavy metals were analysed. Soils affected by mining activities presented total Cd, Cu and Zn concentrations above toxic thresholds. The percentage of extractable element was highest for Cd and lowest for Cu. A highly significant correlation was observed between the total and extractable concentrations of metals in soils, indicating that, among the factors studied, total metals concentration is the most relevant for heavy metals extractability in these soils. (NH(4))(2)SO(4)-extractable metal concentrations in soils are correlated better with metal concentrations in several plant species than total metals in soils, and thus can be used as a suitable and robust method for the estimation of the phytoavailable fraction present in soils. Twenty-five vascular plant species (3 ferns and 22 flowering plants) were analysed, in order to identify exceptional characteristics that would be interesting for soil phytoremediation and/or reclamation. High Cd and Zn concentrations have been found in the aerial parts of Hypericum perforatum (Cd), Salix atrocinerea (Cd, Zn) and Digitalis thapsi (Cd, Zn). The present paper is, to the best of our knowledge, the first report of the metal accumulation ability of the two latter plant species. The phytoremediation ability of S. atrocinerea for Cd and Zn was estimated, obtaining intervals of time that could be considered suitable for the phytoextraction of polluted soils.  相似文献   

4.
Soils on serpentinites in some regions of northwestern Spain have been the subject of agricultural management practices involving the use of fertilizers and various types of organic waste containing heavy metals. Although such practices have facilitated crop growth, they have also raised the natural contents in heavy metals of the soils. In this work, three ferralic Cambisols and another three mollic Leptosols with high Cr and Ni contents were used to study competitive sorption and desorption of six heavy metals via K(d100), which was employed as a measure of the ability of the soils to adsorb and retain each metal. Lead was found to be the metal sorbed and retained to the greatest extent, and Cd, Ni and Zn those sorbed and retained in the smallest amounts. Although the ferralic Cambisols were found to contain greater amounts of natural heavy metals, they exhibited an increased ability to adsorb and retain the body of metals relative to the mollic Leptosols by effect of their increased contents in clay and Fe, Mn and Al oxides, in addition to their higher ion-exchange capacity. Based on the results, Pb and Cu are strongly bound, and Zn, Cd and Ni weakly bound, to the soils. The ferralic Cambisols exhibited an increased capacity to adsorb and retain Cd, Ni, Zn and--especially--Cr than the mollic Leptosols; the latter, however, proved more effective in adsorbing and retaining Cu and Pb by virtue of their increased organic matter contents. Copper sorption and retention, and Pb retention, were found to be correlated with the content in organic matter and that in vermiculite--which was only present in the mollic Leptosols--in the clay fraction.  相似文献   

5.
pH is one of the key parameters that determines heavy metal mobility in soils, sediments and waste materials. In many respects leaching behaviour as reflected by the pH(stat) leaching tests provide a better means of assessing environmental impact than analysis of total elemental composition. This paper discusses the use of pH(stat) leaching tests as a tool to assess the potential mobilisation of trace metals from soils, sediments and waste materials. The possibilities of pH(stat) leaching tests are illustrated by means of different examples. The mathematical fitting of metal leaching behaviour from soils and sediments enabled a distinction between 5 groups of elements with a different leaching behaviour, which could be related to 'pools' with different reactivity. Contrary to single and sequential extractions, where pH is difficult to control, the reactivity and mobility of metals at a user-defined pH can be investigated. Moreover, the potential buffering capacity of the sample and its sensitivity to pH changes as a result of external stresses (e.g. soil acidification, liming) can be estimated. A multidisciplinary approach combining mineralogical analysis (X-ray diffraction) with chemical analysis, pH(stat) leaching tests and geochemical modelling (MINTEQA2) can provide information on the solid-phase speciation and reactivity of heavy metals in soils, sediments and waste materials. Besides the influence of pH on heavy metal leaching behaviour, additional information on heavy metal leachability and retention by the solid matrix was obtained from the kinetics of metal release during a pH(stat) test.  相似文献   

6.
Phytoextraction by hyperaccumulators has been proposed for decreasing toxic-metal concentrations of contaminated soils. However, hyperaccumulators have several shortcomings to introduce these species into Asian Monsoon's agricultural fields contaminated with low to moderate toxic-metals. To evaluate the phytoextraction potential, maize (Gold Dent), soybean (Enrei and Suzuyutaka), and rice (Nipponbare and Milyang 23) were pot-grown under aerobic soil conditions for 60d on the Andosol or Fluvisol with low to moderate copper (Cu), lead (Pb), and zinc (Zn) contamination. After 2 months cultivation, the Gold Dent maize and Milyang 23 rice shoots took up 20.2-29.5% and 18.5-20.2% of the 0.1molL(-1) HCl-extractable Cu, 10.0-37.3% and 8.5-34.3% of the DTPA-extractable Cu, and 2.4-6.5% and 2.1-5.9% of the total Cu, respectively, in the two soils. Suzuyutaka soybean shoot took up 23.0-29.4% of the 0.1molL(-1) HCl-extractable Zn, 35.1-52.6% of the DTPA-extractable Zn, and 3.8-5.3% of the total Zn in the two soils. Therefore, there is a great potential for Cu phytoextraction by the Gold Dent maize and the Milyang 23 rice and for Zn phytoextraction by the Suzuyutaka soybean from paddy soils with low to moderate contamination under aerobic soil conditions.  相似文献   

7.
The pH dependency of the removal of Cu, Zn and Pb by electrodialytic soil remediation from different industrially polluted soils was examined. From 18 experiments performed with five different soils, it was found that the order of mobilization due to a pH decrease was Zn>Cu>Pb. It was found, too, that each of the elements was removed at higher soil pH in calcareous soils (about 12% carbonates) than in soils with a carbonate content of less than 3.7%. In soils rich in carbonates, precipitation of heavy metal carbonates is an important retention mechanism and the heavy metal carbonates are dissolved at higher pH values than the pH at which heavy metals are desorbed in non-calcareous soils. Thus, the relation between the soil pH and the mobility of the heavy metal in the electric field is not only dependent on the heavy metal in focus, but also on the fraction of the heavy metal precipitated as carbonates.  相似文献   

8.
Phytoremediation, use of plants for remediation, is an emerging technology for treating heavy metals or a final polishing step for the high-level organic contamination, and may be suitable for remediation of heavy metal and organic co-contaminated soil. The aim of this study was to investigate the influence of co-contamination on the growth of Zea mays L. and the fate of both heavy metal and organic pollutants, using Cu and pyrene as the model pollutants. Results showed that shoot and root biomass were affected by the copper–pyrene co-contamination, although maize grown in spiked soils showed no outward signs of phytotoxicity. With the initial concentration of 50,100 and 500 mg/kg, pyrene tended to alleviate the inhibition of Cu to Z. mays L. Pyrene in both planted and non-planted soil was greatly decreased at the end of the 4-week culture, accounting for 16–18% of initial extractable concentrations in non-planted soil and 9–14% in planted soil, which indicated that the dissipation of soil pyrene was enhanced in the presence of vegetation probably due to the biodegradation and association with the soil matrix. With the increment of Cu level, residual pyrene in the planted soil tended to increase. The pyrene residual in the presence of high concentration of Cu was even higher in the planted soil than that in the non-planted soil, which suggested that the change of the microbial composition and microbial activity or the modified root physiology under Cu stress was probably unbeneficial to the dissipation of pyrene. A more thorough understanding of the mechanisms by which metals affect the dissipation of organic pollutants in the rhizosphere could provide a much better framework on which to base manipulation. Unlike pyrene, heavy metal copper cannot be degraded. Decontamination of Cu from contaminated soils in this system required the removal of Cu by plants. It was observed that the ability of Cu phytoextraction would be inhibited under co-contamination of high level of pyrene in highly Cu-polluted soil. In the treatment of 400 mg Cu/kg and 500 mg pyrene/kg, the accumulation of Cu was less than half of that in 400 mg Cu/kg treatment.  相似文献   

9.
Poultry litter (PL) has useful nutrients and is therefore used as manure. In addition to N, P and K, PL also contains some heavy metals (As, Cd, Cu, Mn, Pb and Zn), antibiotics, antioxidants, mold inhibitors and other organic compounds. Poultry litter aqueous leachate (PLL) has been shown to be toxic to many organisms; PLL is more toxic than the aqueous leachate of other animal manures used on agricultural soils. Clayey soils are known to retain toxic heavy metals. The objective of this study was to measure the change in toxicity (EC50) of PLL on the addition of clay mineral--montmorillonite. A significant reduction (124%) in toxicity of the clay poultry litter leachate (CLL) after 7 days was observed compared to the toxicity of the PLL alone after 1 day. This indicates that some of the toxic components of the litter were adsorbed by the clay.  相似文献   

10.
Li J  He M  Han W  Gu Y 《Journal of hazardous materials》2009,164(2-3):976-981
An investigation on heavy metal sources, i.e., Cu, Zn, Ni, Pb, Cr, and Cd in the coastal soils of Shanghai, China, was conducted using multivariate statistical methods (principal component analysis, clustering analysis, and correlation analysis). All the results of the multivariate analysis showed that: (i) Cu, Ni, Pb, and Cd had anthropogenic sources (e.g., overuse of chemical fertilizers and pesticides, industrial and municipal discharges, animal wastes, sewage irrigation, etc.); (ii) Zn and Cr were associated with parent materials and therefore had natural sources (e.g., the weathering process of parent materials and subsequent pedo-genesis due to the alluvial deposits). The effect of heavy metals in the soils was greatly affected by soil formation, atmospheric deposition, and human activities. These findings provided essential information on the possible sources of heavy metals, which would contribute to the monitoring and assessment process of agricultural soils in worldwide regions.  相似文献   

11.
A pot experiment was carried out to study the potential of the plant of Brassica juncea for the phytoextraction of metal from fly ash amended soil and to study correlation between different pool of metals (total, DTPA, CaCl(2) and NH(4)NO(3)) and metal accumulated in the plant in order to assess better extractant for plant available metals. The results of total metal analysis in the soil revealed the presence of Cr, which was found below detection limit (BDL) in the plants. The fly ash (FA) amendments and soil samples were extracted with different extractants and the level of metal vary from one extractant to another. The regression analysis between total and extractable metals showed better regression for all the tested metals except Mn (R(2)=0.001) in DTPA extraction. Correlation coefficient between metal accumulation by the plant tissues and different pool of metals showed better correlation with DTPA in case of Fe, Zn and Ni, whereas, Cu was significantly correlated with NH(4)NO(3) and other metals (Pb, Mn) with CaCl(2). The soil analysis results revealed that the mobility and plant availability of metals (Fe, Mn, Zn, Ni) within the profiles of amended soils was influenced by the change in pH, however, Pb and Cu was not affected. The metal accumulation in total plant tissues was found in the order of Fe>Ni>Zn>Mn>Cu>Pb and its translocation was found more in upper part. The plants grown on soil amended with 25%FA have shown significant increase in plant biomass, shoot and plant height, whereas, no significant effect was observed in root length. The cluster analysis showed 10%FA behave differently on the basis of physico-chemical properties and metal behavior. Thus, it may be concluded that B. juncea can be used for phytoextraction of metals, especially Ni in fly ash amendment soil.  相似文献   

12.
Phytoremediation is a technology for extracting or inactivating pollutants. Echinochloa polystachya [(H.B.K.) Hitchcock] (Poaceae) is a fast-growing perennial grass that is common in tropical areas and is often found in oil-polluted soils that contain high concentrations of heavy metals. However, its tolerance to heavy metals, and its ability to accumulate them, has yet to be investigated. Here we test the hypothesis that E. polystachya is able to accumulate high concentrations of cadmium (Cd). Plants were grown hydroponically with different levels of Cd(2+) (0, 0.25, 1, 2, 10, 50, and 100mgL(-1)), and were found to be tolerant to Cd(2+) at all levels. No metal-toxicity symptoms were observed at any Cd(2+) level. Root and leaves Cd concentrations were 299+/-13.93 and 233+/-8.77mgkg(-1) (on a dry weight basis), respectively. Scanning electron microscopy showed the inclusion of Cd within the xylem; this result was confirmed by energy dispersive X-ray spectrometry. Leaf tissues also accumulated Cd, especially within the bulliform cells of the epidermis. We conclude that E. polystachya is a hyperaccumulator of Cd. While data for other metals are not yet available, E. polystachya shows promise in the phytoextraction of Cd from polluted tropical sites.  相似文献   

13.
Feasibility of metal recovery from soil using DTPA and its biostability   总被引:6,自引:0,他引:6  
Removal of heavy metals from contaminated soil by chelation can be a valid remediation method. Important properties of the chelating agent used are: strength of the chelation bonding, reusability, and biostability during the remediation operation. This work tested the extraction, recovery, and biostability of diethylenetriaminepentaacetate (DTPA) as a remediation agent for soils contaminated with metals. Reported here are effects of parameters such as DTPA concentration, precipitant type and concentration, and pH relative to extraction and recovery efficiencies of the chelator, as well as workable recovery conditions. The assessment of biostability was determined at different DTPA concentrations, in aqueous and soil slurry systems, and in presence of lead using acclimated and unacclimated activated sludge cultures. The results showed that DTPA was capable of extracting lead from the tested contaminated soils and could be recovered by the use of cationic and anionic precipitants in alkaline pH conditions. It was biostable to some extent especially with unacclimated cultures. Thus, DTPA proved to be a strong and reusable chelating agent for some metals in soils, and it was relatively biostable, which makes it a valid remediation agent for soil metal extraction.  相似文献   

14.
Chelant extraction of heavy metals from contaminated soils.   总被引:36,自引:0,他引:36  
The current state of the art regarding the use of chelating agents to extract heavy metal contaminants has been addressed. Results are presented for treatability studies conducted as worst-case and representative soils from Aberdeen Proving Ground's J-Field for extraction of copper (Cu), lead (Pb), and zinc (Zn). The particle size distribution characteristics of the soils determined from hydrometer tests are approximately 60% sand, 30% silt, and 10% clay. Sequential extractions were performed on the 'as-received' soils (worst case and representative) to determine the speciation of the metal forms. The technique speciates the heavy metal distribution into an easily extractable (exchangeable) form, carbonates, reducible oxides, organically-bound, and residual forms. The results indicated that most of the metals are in forms that are amenable to soil washing (i.e. exchangeable+carbonate+reducible oxides). The metals Cu, Pb, Zn, and Cr have greater than 70% of their distribution in forms amenable to soil washing techniques, while Cd, Mn, and Fe are somewhat less amenable to soil washing using chelant extraction. However, the concentrations of Cd and Mn are low in the contaminated soil. From the batch chelant extraction studies, ethylenediaminetetraacetic acid (EDTA), citric acid, and nitrilotriacetic acid (NTA) were all effective in removing copper, lead, and zinc from the J-Field soils. Due to NTA being a Class II carcinogen, it is not recommended for use in remediating contaminated soils. EDTA and citric acid appear to offer the greatest potential as chelating agents to use in soil washing the Aberdeen Proving Ground soils. The other chelating agents studied (gluconate, oxalate, Citranox, ammonium acetate, and phosphoric acid, along with pH-adjusted water) were generally ineffective in mobilizing the heavy metals from the soils. The chelant solution removes the heavy metals (Cd, Cu, Pb, Zn, Fe, Cr, As, and Hg) simultaneously. Using a multiple-stage batch extraction, the soil was successfully treated passing both the Toxicity Characteristics Leaching Procedure (TCLP) and EPA Total Extractable Metal Limit. The final residual Pb concentration was about 300 mg/kg, with a corresponding TCLP of 1.5 mg/l. Removal of the exchangeable and carbonate fractions for Cu and Zn was achieved during the first extraction stage, whereas it required two extraction stages for the same fractions for Pb. Removal of Pb, Cu, and Zn present as exchangeable, carbonates, and reducible oxides occurred between the fourth- and fifth-stage extractions. The overall removal of copper, lead, and zinc from the multiple-stage washing were 98.9%, 98.9%, and 97.2%, respectively. The concentration and operating conditions for the soil washing extractions were not necessarily optimized. If the conditions had been optimized and using a more representative Pb concentration (approximately 12000 mg/kg), it is likely that the TCLP and residual heavy metal soil concentrations could be achieved within two to three extractions. The results indicate that the J-Field contaminated soils can be successfully treated using a soil washing technique.  相似文献   

15.
Present study reports the results of three pot experiments, conducted to investigate the chelate-assisted phytoextraction of Pb contaminated soils. The optimum phytoextraction was observed when 2.5 mM ethylene diamine disuccinic acid (EDDS) was added in single dosage for 14 days to low Pb soil (treated with 400 mg kg−1 soil). On the contrary, for high Pb soil (treated with 1200 mg kg−1 soil), 5 mM EDDS concentration in single dosage for 10 days produced better results. Post-harvest effects of EDDS on the concentrations of available Pb and dissolved organic carbon (DOC) were significantly higher as compared with check (CK i.e. without EDDS addition), and consequently decreased with the passage of time. Our results suggested that chelate-assisted phytoextraction was more suitable for slightly contaminated soils.  相似文献   

16.
The effects of heavy metal contamination on soil enzyme activity and earthworm health (bioaccumulation and condition) were studied in contaminated soils collected from an formerly open burning and open detonation (OBOD) site. Soil extraction methods were also evaluated using CaCl2 and DTPA solutions as surrogate measures of metal bioavailability and ecotoxicity. Total heavy metal content of the soils ranged from 0.45 to 9.68 mg Cd kg−1, 8.96 to 5103 mg Cu kg−1, 40.21 to 328 mg Pb kg−1, and 56.61 to 10,890 mg Zn kg−1. Elevated metal concentrations are assumed to be primarily responsible for the reduction in enzyme activities and earthworm health indices. We found significant negative relationships between CaCl2- and DTPA-extractable metal content (Cd, Cu, and Zn) and soil enzyme activity (P < 0.01). Therefore, it could be concluded that soil enzyme activity and metal bioaccumulation by earthworms can be used as an ecological indicator of metal availability. Furthermore, CaCl2 and DTPA extraction methods are proved as promising, precise, and inexpensive surrogate measures of Cd, Cu, Pb, and Zn bioavailability from heavy metal-contaminated soils.  相似文献   

17.
The paper gives knowledge and application values in efficiency of applying brown coal to limit uptake of heavy metals from contaminated soils by different plant species. The paper determines possibility and principles of using brown coal in reclamation of soils contaminated with heavy metals and rebuilding soils on devastated terrains like terrain in the influence zone of Copper-Smelter "Legnica". On the basis of pot experiment it was stated that increasing doses of brown coal limited phytotoxicity of soils. Results of the paper show that tested fertilizer could be applied on soils strongly contaminated with heavy metals giving long-lasting improvement of reclaimed soils.  相似文献   

18.
Heavy metal adsorption onto agro-based waste materials: a review   总被引:19,自引:1,他引:19  
Adsorption has been proved to be an excellent way to treat industrial waste effluents, offering significant advantages like the low-cost, availability, profitability, easy of operation and efficiency. Biosorption of heavy metals from aqueous solutions is a relatively new process that has proven very promising in the removal of contaminants from aqueous effluents. Biosorption is becoming a potential alternative to the existing technologies for the removal and/or recovery of toxic metals from wastewater. The major advantages of biosorption technology are its effectiveness in reducing the concentration of heavy metal ions to very low levels and the use of inexpensive biosorbent materials. Metal adsorption and biosorption onto agricultural wastes is a rather complex process affected by several factors. Mechanisms involved in the biosorption process include chemisorption, complexation, adsorption-complexation on surface and pores, ion exchange, microprecipitation, heavy metal hydroxide condensation onto the biosurface, and surface adsorption.  相似文献   

19.
Research on the phytoextraction of Cr from contaminated soils has been scarce, because very few plant species have been reported to accumulate Cr to high concentrations in their aerial parts. In this study, a Cr-hyperaccumulator, Leersia hexandra was investigated for its potential to remove Cr from the soil in a series of pot experiments. The results showed that L. hexandra had a high extraction capacity for chromium in soil, with the highest Cr concentration in shoot of 1844 mg/kg. Model calculation based on the negative linear relationship between the bioconcentration factors (BCF) and the concentrations of soil Cr indicated that phytoremediation using L. hexandra was feasible when soil was only moderately contaminated with Cr. Three sequential harvests did not significantly alter Cr accumulation and shoot biomass (p > 0.05), indicating that sequential harvest might be an available and convenient way to achieve the decontamination of Cr-contaminated soils by L. hexandra. On average, fertilization increased the shoot biomass by 45% and the total amount of extracted-Cr by 26%, suggesting that fertilization is able to enhance Cr phytoextraction of L. hexandra. Although EDTA increased the concentrations of Cr in shoots by 1.4 times, it also resulted in low plant biomass, thereby decreasing the amount of Cr accumulation.  相似文献   

20.
目的综述碳点荧光探针在农产品快速检测中的进展,为保证农产品质量安全提供参考。方法通过对国内外文献进行归纳总结,分析碳点的特点、检测原理和合成方法;围绕农产品中常见的重金属离子与农药检测,综述碳点荧光探针的应用进展;并就现存问题对其未来发展方向进行展望。结果虽然碳点荧光探针在农产品快速检测中已经取得一定成果,但在荧光机理、检测灵敏度、稳定性等方面仍有一些亟待解决的问题,需要开展深入的研究。结论碳点具有光学性质稳定、表面易于功能化、反应速度快和生物相容性好等优势,对其进行修饰、掺杂和钝化可以拓宽检测范围,提高检测性能,有望在农产品快速检测应用中发挥更重要的作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号