首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
多种酶法处理提高马铃薯回生抗性淀粉制备率   总被引:4,自引:1,他引:4  
以马铃薯淀粉为原料,以抗性淀粉制备产率为考察指标,研究α–淀粉酶、糖化酶和纤维素酶种类、酶加量、酶解时间、酶解温度、酶解pH、多种酶最佳配比及酶解顺序对RS3型抗性淀粉制备产率影响。固定条件:淀粉乳10%,高压温度120℃,高压时间30min,老化温度4℃,老化时间12h,糖化酶单独处理制备马铃薯回生抗性淀粉最佳酶解工艺条件为:糖化酶加量为1,200U/mL,酶解时间为60min,pH为5.0,酶解温度为55℃,制备产率达8.862%;纤维素酶单独处理制备马铃薯回生抗性淀粉最佳酶解工艺条件为:纤维素酶加量为40U/mL,酶解时间为45min,pH为5.0,酶解温度为35℃,制备产率达17.748%。α–淀粉酶、糖化酶和纤维素酶两两联合处理、三种酶共同处理均使马铃薯回生抗性淀粉制备产率降低;而纤维素酶处理可大大提高马铃薯回生抗性淀粉制备产率。RS3制备过程系为通过破坏纤维素等阻隔淀粉分子聚集的非淀粉物质提高制备产率,比将淀粉分子分解从颗粒结构中释放出以提高RS3制备产率更为有效。  相似文献   

2.
α-淀粉酶水解马铃薯淀粉制备抗性淀粉   总被引:4,自引:3,他引:4  
以马铃薯淀粉为原料,研究制备RS3型抗性淀粉制备工艺,以抗性淀粉制备产率为考察指标,探讨淀粉浓度、淀粉糊化温度、酶加量、作用时间、作用温度、老化温度和时间等对抗性淀粉产率影响。结果表明,马铃薯回生抗性淀粉最佳制备工艺参数分别为:淀粉乳浓度为10%、高压温度120℃、高压时间30min、α–淀粉酶加入量为120U/mL,淀粉溶液酶解时间30min、pH为6、老化温度4℃、老化时间12h,马铃薯回生抗性淀粉产率达1.126%。  相似文献   

3.
以甘薯淀粉为原料,采用电解、微波复合法制备回生抗性淀粉;以抗性淀粉制备率为考察指标,讨论微波、电解顺序对回生抗性淀粉制备产率的影响。最佳工艺为:淀粉→糊化→高压→微波→电解→老化→酶解→离心→干燥;最佳工艺参数:淀粉乳质量浓度50 g/L,高压温度120℃,高压时间30 min,糊化温度90℃,糊化时间30min,微波功率400 W,处理时间4 min,电解电压90 V,电解时间2 min,老化温度4℃,老化时间12 h。在此工艺条件下,甘薯回生抗性淀粉产率为24%,比空白组12%产率提高了1倍。  相似文献   

4.
以马铃薯淀粉为原料,淀粉回生率为考察指标,研究酵母菌发酵对马铃薯淀粉回生率的影响。通过对比发酵前后马铃薯回生淀粉的可见和红外吸收曲线,分析了酵母菌发酵提高马铃薯淀粉回生率的机理。结果表明,纤细酵母菌发酵马铃薯淀粉可使马铃薯淀粉回生率由12%提高到39.4%,提高了2.28倍。发酵后马铃薯回生淀粉中直链淀粉的最大可见吸收波长为587.8 nm,大于发酵前的569.6 nm。酵母菌发酵马铃薯淀粉提高其回生率的原因有两方面:一是发酵过程产生的酶使马铃薯支链淀粉脱支生成直链淀粉,增加了参与回生直链淀粉的量;二是发酵过程使马铃薯淀粉中醛基部分转变为伯醇基,进而生成糖苷键,增加直链淀粉链长,有利于淀粉回生过程晶体长大。  相似文献   

5.
以甘薯淀粉为原材料,甘薯淀粉回生率为指标,研究冷藏、常温、真空减压和干燥箱干燥等不同老化工艺对甘薯回生抗性淀粉生成率的影响.结果表明,4℃冷藏条件下,老化72 h后甘薯淀粉回生率达到最高,由9.2%提高到13.4%;常温下,大气温度为16~19℃,大气湿度为68%~80%时,常温老化96 h后甘薯淀粉回生率达到最高,由9.9%提高到15.4%;真空干燥箱温度为30℃,真空度为0.08 MPa时98 h甘薯淀粉回生率最大为20.96%;干燥箱温度为30℃时,老化90 h甘薯淀粉回生率最大为15.38%;真空老化有利于甘薯淀粉回生.  相似文献   

6.
干燥工艺对甘薯淀粉回生率影响   总被引:1,自引:0,他引:1  
以甘薯淀粉为原材料,以甘薯淀粉回生率为指标,研究常温、太阳晒、真空减压、干燥箱和微波干燥等不同干燥工艺对甘薯回生抗性淀粉生成率影响。结果表明,各干燥最佳工艺参数为:常温下大气温度为16℃~19℃、大气湿度为68%~80%时,老化后甘薯淀粉5 d达至恒重,回生率由3.5%提高到4.5%,提高28.5%;阳光照射下,大气温度为23℃~36℃、大气湿度为42%~74%时,老化后甘薯淀粉5 d达至恒重,回生率由3.5%提高到4.7%,提高34.2%;真空干燥箱温度为120℃、真空度为0.08 MPa时,甘薯淀粉回生率最大,为14.62%,比空白提高3.1倍;干燥箱温度为90℃时,甘薯淀粉回生率最大,为12.24%,比空白提高2.5倍;微波温度为45℃时,甘薯淀粉回生率最大,为7.12%,比空白提高1倍;相比之下,真空干燥有利于甘薯淀粉回生。  相似文献   

7.
以甘薯淀粉为原料制备抗性淀粉,用正交实验确定压热处理制备抗性淀粉的最佳制备工艺。结果表明,甘薯抗性淀粉制备的最佳条件为:淀粉糊的浓度35%、pH值4.5、糊化温度115℃、糊化时间70min、老化时间72h。  相似文献   

8.
超声波对甘薯回生抗性淀粉生成的作用   总被引:3,自引:0,他引:3  
以甘薯淀粉为原料,研究超声波作用时间、作用温度、作用顺序、盐离子以及淀粉乳浓度对回生抗性淀粉制备产率的影响。研究结果表明,超声波作用下制备回生抗性淀粉的最佳工艺条件为:淀粉乳浓度20%,NaCl的最佳加入量为每100 mL淀粉乳2.0 g,α-淀粉酶加入量200 U/100 mL,酶解时间30 min,酶解温度95℃,超声波作用在酶解和高压之间,超声波作用时间60 min,作用温度30℃,压热温度120℃,压热时间30 min,老化时间12 h,在这种工艺条件下,甘薯回生抗性淀粉产率最高为8.2%,比未经超声波作用的2.5%提高了2.28倍。  相似文献   

9.
酶法结合高压法制备甘薯回生抗性淀粉   总被引:2,自引:0,他引:2  
本试验以甘薯淀粉为原料,采用酶解-压热法制备RS3型抗性淀粉,研究了淀粉乳浓度、压热时间、压热温度、α-淀粉酶、预糊化时间、pH值以及冷藏时间和温度对抗性淀粉制备产率的影响。结果表明:甘薯回生抗性淀粉最佳制备条件为:甘薯淀粉乳浓度为10%;α-淀粉酶加量为120U/ml;预糊化时间为30min;最佳压热温度为120℃,压热处理时间为30min;老化温度为4℃,时间为12 h。采用此工艺制备甘薯回生抗性淀粉,其制备产率可达到7.365%。  相似文献   

10.
结合淀粉回生机理,从淀粉体系在实际应用中所遇到的问题出发,较详细地探讨了添加脂类,糖类与淀酶对淀粉回生物性的影响及相关机理,同时对目前尚未明确或仍有争议的要点作出了评述。  相似文献   

11.
以银杏为原料,研究α-淀粉酶水解制备银杏抗性淀粉工艺。以银杏抗性淀粉得率为指标,探讨α-淀粉酶用量、pH、酶解温度、酶解时间、高压处理温度、高压处理时间、老化温度和老化时间对银杏抗性淀粉得率的影响。结果表明,响应面法优化α-淀粉酶水解制备银杏抗性淀粉的最佳工艺条件:加酶量为8.0U/g,pH为5.8,酶解温度为88.7℃,酶解时间为19.3 min,高压处理温度为120℃,高压处理时间为35 min,老化温度为3℃,老化时间为24 h,在该工艺条件下银杏抗性淀粉得率可达24.12%。为银杏抗性淀粉的开发提供参考。  相似文献   

12.
压热-酶法提高小麦中抗性淀粉及其在蛋糕中应用研究   总被引:1,自引:0,他引:1  
《粮食与油脂》2016,(2):38-41
使用压热和酶联合制备抗性淀粉,通过单因素试验和正交试验对制备工艺进行了优化,当面粉乳浓度25%、压热温度110℃、α–淀粉酶添加量0.24%、普鲁兰酶添加量6%时,制得的小麦粉抗性淀粉含量最高。对抗性淀粉添加量对蛋糕硬度的影响进行了研究,得出抗性淀粉添加量为2%~3%时,制作的蛋糕在贮藏过程中硬度增加明显变小,起到了很好的保鲜效果。  相似文献   

13.
麦芽糖可以诱导枯草芽孢杆菌产生中温α-淀粉酶,甘薯淀粉的β-淀粉酶酶解产物主要为麦芽糖。应用高效液相色谱示差折光检测法对不同酶解条件下甘薯淀粉β-淀粉酶酶解产物进行分析。结果表明,液化酶加入量为5~10U/g干淀粉时,酶解产物中葡萄糖的含量最高可达0.94%±0.048%,其含量较低,不会对枯草芽孢杆菌产α-淀粉酶具有阻遏作用。酶解最佳条件为液化酶加入量5U/g干淀粉,β-淀粉酶最佳加入量为200U/g干淀粉,酶解最佳温度为60℃,最佳酶解时间为28h时,此条件下甘薯淀粉酶解产物中麦芽糖含量达75.8%±1.7%。甘薯淀粉β-淀粉酶酶解产物可以诱导β-淀粉酶酶解产物枯草芽孢杆菌发酵生产中温α-淀粉酶。研究对枯草芽孢杆菌发酵生产中温α-淀粉酶碳源优化具有重要意义。  相似文献   

14.
结合淀粉回生机理,从淀粉体系在实际应用中所遇到的问题出发,较详细地探讨了添加脂类、糖类与淀粉酶对淀粉回生特性的影响及相关机理,同时对目前尚未明确或仍有争议的要点作出了评述  相似文献   

15.
普鲁兰酶和β-淀粉酶对大米支链淀粉回生影响的研究   总被引:11,自引:2,他引:11  
本文研究了普鲁兰酶和β-淀粉酶对大米支甸淀粉回生的影响。通过用DSC和α-淀粉酶两种方法测定其回生。结果表明;β-淀粉酶能够通过切短大米支链淀粉外侧枝链而抑制其回生,且随着酶解度的增加回生抑制更加明显。普鲁兰酶的适度处理加快了大米支链淀粉的回生,脱支下来的短直链不能形成结晶,除外侧短枝链外,其它较长链也可参与结晶,两种检测方法所得结果比较一致。  相似文献   

16.
微波-酶法制备甘薯抗性淀粉的工艺研究   总被引:1,自引:0,他引:1  
以甘薯淀粉为原料,用微波辅助加热酶法制备甘薯抗性淀粉,通过单因素和响应面实验,确定其最佳工艺条件为:淀粉质量分数为11%,微波时间为300s,微波功率800W,普鲁兰酶添加量为78ASPU/g(淀粉干基),脱支处理时间为24h。在该实验条件下,抗性淀粉得率最高值为31.25%,可为今后甘薯抗性淀粉的制备及在食品工业中的应用提供参考。  相似文献   

17.
为提高黑米饮料加工的出汁率,应用中温α-淀粉酶处理进行单因素试验及正交试验研究。实验结果表明:在蒸煮时间10 min、糊化时间20 min、中温α-淀粉酶用量1%、酶解温度70℃的条件下,黑米出汁率为80.25%。与未经中温α-淀粉酶处理的黑米相比,处理后黑米出汁率提高26.88%。表明中温α-淀粉酶处理可提高黑米出汁率,缩短榨汁时间。  相似文献   

18.
甘薯淀粉动力学特性及其回生机理探讨   总被引:2,自引:0,他引:2       下载免费PDF全文
采用流变仪和差示扫描量热仪考察了甘薯淀粉在不同保持时间下的回生过程,发现甘薯淀粉糊化后,在4℃下,支链淀粉结晶、直链淀粉-脂肪复合结晶物和纯直链淀粉结晶的形成和完善是一个动态变化的过程,其动力学模型可用Avrami方程表达.短期回生以直链淀粉结晶为主体,长期回生以支链淀粉结晶为主体,并伴随着直链淀粉链结晶的进一步完善和稳定.  相似文献   

19.
甘薯是重要的淀粉作物,其块根中抗性淀粉(resistant starch,RS)含量较高,具备良好的产品开发潜力。要进一步促进甘薯RS的应用和推广,不仅需要筛选或培育出RS含量更高的甘薯品种,还需要加大开发甘薯深加工淀粉产品。除调控淀粉合成相关基因的表达外,生产实际中还可通过调整栽培措施等方式提高甘薯RS的含量。通过化学修饰法、物理法和酶解法等方法可制备甘薯RS产品,也能提高产品中RS的含量。本文系统综述了近年来甘薯淀粉的保健效果、RS含量的测定方法、影响甘薯淀粉中RS含量的因素、RS的制备方法及其特性等方面的进展,为未来甘薯中RS的制备、产量提高、产品开发和推广提供理论依据和技术指导。  相似文献   

20.
甘薯抗性淀粉理化特性研究   总被引:3,自引:6,他引:3  
选择3个不同类型甘薯品种,以提取获得的抗性淀粉为研究对象,通过X-射线衍射分析仪、差示扫描量热分析仪(DSC)、快速黏度测定仪(RVA)、紫外-可见吸收光谱仪、近红外光谱分析仪(NIRS)和扫描电镜等仪器分别对甘薯原淀粉和其对应抗性淀粉晶体结构类型、熔融温度、淀粉糊化特性、平均聚合度和淀粉分子结构等理化特性深入研究与分析。结果表明,不同甘薯品种间抗性淀粉熔融温度具一定差异,抗性淀粉与其原淀粉间糊化特性、晶体结构等特性呈明显差异。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号