首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this article, an RF MEMS capacitive series switch fabricated using printed circuit processing techniques is discussed. Design, modeling, fabrication, and characterization of the CPW series switch are presented. An example CPW series capacitive switch with insertion loss less than 0.5 dB in the frequency range of 13–18 GHz and isolation better than 10 dB up to 18 GHz is discussed. The switch provides a minimum insertion loss of about 0.1 dB at the self‐resonance frequency of 16 GHz and a maximum isolation of about 42 dB at 1 GHz. © 2007 Wiley Periodicals, Inc. Int J RF and Microwave CAE, 2007.  相似文献   

2.
介绍了一种串联电容式RF MEMS开关的设计与制造。所设计的串联电容式RF MEMS开关利用薄膜淀积中产生的内应力使MEMS桥膜向上发生翘曲,从而提高所设计的开关的隔离度,克服了串联电容式RF MEMS开关通常只有在1GHz以下才能获得较高隔离度的缺点。其工艺与并联电容式RF MEMS开关完全相同,解决了并联电容式RF MEMS开关不能应用于低频段(<10GHz)的问题。其插入损耗为-0.88dB@3GHz,在6GHz以上,插入损耗为-0.5dB;隔离度为-33.5dB@900MHz、-24dB@3GH和-20dB@5GHz,适合于3~5GHz频段的应用。  相似文献   

3.
A novel DMTL capacitive switch with electrostatic actuation MAM capacitors   总被引:1,自引:0,他引:1  
A novel DMTL capacitive switch with electrostatic actuation metal–air–metal (MAM) capacitors is presented. The top board of MAM capacitors will be pulled down together with the switch bridge. It has higher isolation in down-state than DMTL capacitive switch and has lower insert loss and higher self-actuation RF power comparing with MEMS shunt capacitive switch. Two of the novel DMTL capacitive switches are designed for high isolation and high self-actuation RF power, respectively. The calculated result shows that both of the two novel switches have lower insert loss than the MEMS shunt capacitive switch. The self-actuation RF power of them are 4 and 2.4 times that of MEMS shunt capacitive switch, respectively, at the cost of ?6.23 and ?3.54?dB reduction in isolation (30?GHz).  相似文献   

4.
Thin-Film Encapsulated RF MEMS Switches   总被引:1,自引:0,他引:1  
A wafer-level thin-film encapsulation process has been demonstrated to package radio-frequency (RF) microelectromechanical systems (MEMS) switches in this paper. Individual shunt capacitive switches were packaged in a ~1nL inorganic enclosure with process temperatures not exceeding 300 degC. A shell covering the switch consisted of 10 nm of sputtered alumina and 1.67 mum of sputtered silicon nitride dielectric film. The switch and dielectric shell were simultaneously wet-released through access channels in the shell. Following release, access channels were sealed with 10 nm of sputtered alumina and 2-4 mum of either plasma-enhanced chemical vapor deposited silicon dioxide or silicon nitride. Electromagnetic simulation and RF test results before and after sealing show minimal RF degradation of switch performance. Before sealing, the insertion loss and isolation at 10 GHz averaged 0.12 and 10.7 dB, respectively. After sealing, the same devices had an average insertion loss and isolation of 0.12 and 10.1 dB, respectively. Complete characterization of the package atmosphere was not completed due to challenges in assessing nanoliter-scale volumes  相似文献   

5.
The objective of this paper is to investigate novel configurations of planar multiport radio-frequency (RF) microelectromechanical systems (MEMS) C-type and R-type switches and redundancy switch matrices for satellite communications. An in-house monolithic fabrication process dedicated to electrostatic multiport RF MEMS switches and switch matrices is developed and fine tuned. The proposed C-type switch is a four-port device with two operational states. This switch exhibits an insertion loss of less than 0.3 dB and isolation of about 25 dB at satellite C-band frequency range. The novel R-type switch is also a four-port device with an additional operational state. The measured results show an insertion loss of better than 0.4 dB and an isolation of better than 25 dB at C-band. This is the first time that an R-type RF MEMS switch is ever reported. Several of these switches are integrated in the form of redundancy switch matrices, and two novel monolithic five to seven redundancy switch matrices are developed, fabricated, and tested. It is shown that the additional operating state of the R-type switch not only decreases the number of elements by 50% but also reduces the size drastically  相似文献   

6.
In this paper, the design, fabrication, and measurement of reliable low-cost capacitive radio-frequency microelectromechanical systems switches with a novel fabrication approach using direct photodefinable high-k metal oxides are presented. In this approach, a radiation-sensitive metal-organic precursor is deposited via spin coating and converted to a high-k metal oxide via ultraviolet exposure. Measurements of the bridge-type switches have been done up to 40 GHz. These switches are reliable (> 340 million cycles) and exhibited low insertion loss (about 0.3 dB at 20 GHz) and better isolation (about 24 dB at 20 GHz) at frequencies below the resonant frequency as compared to switches that are fabricated using a simple silicon nitride dielectric.  相似文献   

7.
Microsystem Technologies - This paper presents a new RF MEMS capacitive shunt switch with low voltage, low loss and high isolation for K-band applications. In this design, we have proposed the step...  相似文献   

8.
RF MEMS membrane switches on GaAs substrates for X-band applications   总被引:2,自引:0,他引:2  
Micromechanical switches have demonstrated great potential at microwave frequencies. For low-loss applications at microwave frequencies, it is important to use high-resistivity substrates. This paper presents the design and fabrication of the shunt-capacitive MEMS switch on GaAs substrates. Analytical mechanical and impedance models of the membrane switch are given, and the results are confirmed by using the ANSYS and HFSS software, respectively. A surface micromachining process, which is compatible with the conventional millimeter-wave integrated circuits (MMICs) fabrication technology, was adopted to fabricate the RF switch on GaAs substrates. Its S-parameter was taken using a HP8510C vector network analyzer and a Cascade Probe station. The measured insertion loss of the switch and its associated transmission line is less than 0.25 dB from 1 to 25.6 GHz, and the isolation may reach -42 dB at its self-resonate frequency of 24.5 GHz. The actuation voltage is about 17 V. The switch has demonstrated lifetimes as long as 5/spl times/10/sup 6/ cycles. The wideband high performance in isolation and insertion loss offers the monolithic integration capability with GaAs MMICs.  相似文献   

9.
The lateral actuated switch requires an isolation structure to provide mechanical coupling and electrical isolation between the actuator and the contacts. This isolation structure usually imposes extra difficulty on the fabrication process. In previous reports, we demonstrated a thermal actuated lateral switch, where the nitride isolation structure was a weak point, leading to reliability problems. In this paper, we developed a modified switch utilizing undoped polysilicon as the isolation material. The undoped-polysilicon isolation structure requires only one extra step of sheltered implantation, and it provides robust mechanical connection. A 20-mum-long undoped-polysilicon isolation structure has a current leakage of less than 2 nA under a 15-V operation voltage. The proposed switch works under a 12-V driving voltage with 60-mW input power. The time response is measured to be 130 mus, and a maximum operation frequency of 4.5 kHz is reached. An ON-state insertion loss of -0.41 dB at 20 GHz and an OFF-state isolation of -20 dB at 20 GHz have been achieved on the normal low-resistivity silicon substrate. The undoped-polysilicon isolation method can be used in other surface-micromachined lateral switches as well.  相似文献   

10.
A novel torsional RF MEMS capacitive switch design on silicon substrate is presented. The optimized switch topology such as reduction in up-state capacitance results in insertion loss better than ?0.1 dB till 20 GHz. Off to on state capacitance ratio is also improved by 18 fold and isolation is better than ?43 dB at 9.5 GHz. The achieved on state return loss is ?38 dB as compared to ?21 dB at 9.5 GHz. An optimized reduction in contact area and use of floating metal layer increases the switching speed from 56 to 46 μsec. It also increases the switch reliability by alleviating the stiction.  相似文献   

11.
This paper reports the design, fabrication, and testing of a liquid-metal (LM) droplet-based radio-frequency microelectromechanical systems (RF MEMS) shunt switch with dc-40 GHz performance. The switch demonstrates better than 0.3 dB insertion loss and 20 dB isolation up to 40 GHz, achieving significant improvements over previous LM-based RF MEMS switches. The improvement is attributed to use of electrowetting on dielectric (EWOD) as a new actuation mechanism, which allows design optimized for RF switching. A two-droplet design is devised to solve the biasing problem of the actuation electrode that would otherwise limit the performance of a single-droplet design. The switch design uses a microframe structure to accurately position the liquid-solid contact line while also absorbing variations in deposited LM volumes. By sliding the liquid-solid contact line electrostatically through EWOD, the switch demonstrates bounceless switching, low switch-on time (60 mus), and low power consumption (10 nJ per cycle).  相似文献   

12.
Micromachined low-loss microwave switches   总被引:9,自引:0,他引:9  
The design and fabrication of a micromechanical capacitive membrane microwave switching device is described. The switching element consists of a thin metallic membrane, which has two states, actuated or unactuated, depending on the applied bias. A microwave signal is switched on and off when the membrane is switched between the two states. These switches have a switching on speed of less than 6 μs and a switching off speed of less than 4 μs. The switching voltage is about 50 V. The switches have a bowtie shape and showed low insertion loss of 0.14 dB at 20 GHz and 0.25 dB at 35 GHz, and isolation of 24 dB at 20 GHz and 35 dB at 35 GHz. These devices offer the potential for building a new generation of low-loss high-linearity microwave circuits for a variety of phased antenna arrays for radar and communications applications  相似文献   

13.
This paper details single-crystalline silicon (SCS) direct contact radio frequency microelectromechanical systems (RF MEMS) switch designed and fabricated using an SiOG (silicon-on-glass) substrate, so as to obtain higher fabrication and performance uniformity compared with a conventional metal switch. The mechanical and electrical performances of the fabricated silicon switch have been tested. In comparison with a conventional metallic MEMS switch, we can obtain higher productivity and uniformity by using SCS, because it has very low stresses and superior thermal characteristics as a structural material of the switch. Also, by using the SiOG substrate instead of an SOI substrate, fabrication cost can be significantly reduced. The proposed switch is fabricated on a coplanar waveguide (CPW) and actuated by electrostatic force. The designed chip size is 1.05 mm/spl times/0.72 mm. Measured pull-in voltage and actuation voltage were 19 V and 26 V, respectively. Eighteen identical switches taken randomly throughout the wafer showed average and standard deviation of the measured pull-in voltage of 19.1 and 1.5 V, respectively. The RF characteristics of the fabricated switch from dc to 30 GHz have been measured. The isolation and insertion loss measured on the four identical samples were -38 to -39 dB and -0.18 to -0.2 dB at 2 GHz, respectively. Forming damping holes on the upper electrode leads to a relatively fast switching speed. Measured ON and OFF time were 25 and 13 /spl mu/s, respectively. In the switch OFF state, self-actuation does not happen up to the input power of 34 dBm. The measured holding power of the fabricated switch was 31 dBm. Stiction problem was not observed after 10/sup 8/ cycles of repeated actuation, but the contact resistance varied about 0.5-1 /spl Omega/ from the initial value.  相似文献   

14.
The design, modeling, and optimization of a novel, thermally actuated CMOS‐MEMS switch are presented in this article. This series capacitive MEMS switch solves the substrate loss and down‐state capacitance degradation problems commonly plaguing MEMS switches. The switch uses finger structure for capacitive coupling. The vertical bending characteristic of bimorph cantilever beams under different temperatures is utilized to turn the switch on and off. A set of electrical, mechanical, and thermal models is established, and cross‐domain electro‐thermo‐mechanical simulations are performed to optimize the design parameters of the switch. The fabrication of the switch is completely CMOS‐process compatible. The design is fabricated using the AMI 0.6 μm CMOS process and a maskless reactive‐ion etching process. The measured results show the insertion loss and isolation are 1.67 and 33 dB, respectively, at 5.4 GHz, and 0.36 and 23 dB at 10 GHz. The actuation voltage is 25 V and the power consumption is 480 mW. This switch has a vast number of applications in the RF/microwave field, such as configurable voltage control oscillators, filters, and configurable matching networks. © 2009 Wiley Periodicals, Inc. Int J RF and Microwave CAE, 2009.  相似文献   

15.
A structure for a piezoelectrically actuated capacitive RF MEMS switch that is continuously variable between the ON state and the OFF state has been proposed. The device is based on variable capacitance using a cantilever fixed at both ends that is actuated using a lead zirconate titanate thin film. Because the device is contactless, the reliability issues common in contact-type RF MEMS switches can be avoided. A comprehensive mathematical model has been developed in order to study the performance of the device, and allow for design optimization. Electrical measurements on test structures have been compared with the performance predicted by the model, and the results used to design a prototype RF MEMS switch. The model and simulations indicate the proposed switch structure can provide an insertion loss better than 0.7 dB and an isolation of more than 10 dB between 6 and 14 GHz with an actuation voltage of 22.4 V. The state of the device is continuously variable between the ON state and the OFF state, with a tunable range of capacitance of more than 15\(\times \).  相似文献   

16.
This paper presents a low insertion loss capacitive shunt RF-MEMS switch. In the presented design, float metal concept is utilized to reduce the capacitance in up-state of the device. Float metal switch shows an insertion loss <0.11 dB, a return loss below 26.27 dB up to 25 GHz as compared to 0.81 dB insertion, 8.67 dB return loss for the conventional switch without float metal. OFF state response is same for the both devices. Further pull-in voltage of 12.75 V and switching time of 69.62 µs have been observed in case of the conventional switch whereas device with float metal have 11.75 V and 56.41 µs. Improvement of around 2.5 times in bandwidth and 4 times in input power has been observed without self actuation, hold down problem. The designed switch can be useful at device and sub-system level for multi-band applications.  相似文献   

17.
This work fabricates a novel type of micromachined microwave switch on a semi-insulating GaAs substrate using a microactuator and a coplanar waveguide (CPW) using electrostatic actuation as the switching mechanism. The microactuator uses several continuously-bent cantilevers connected in series. A cantilever with two sections, a straight-beam section and a curved-beam section, forms the basic unit of the microactuator. The straight-beam section is made of an aluminum (Al) layer, 0.5 μm thick. The curved-beam section is made of an Al layer of the same thickness, combined with a 0.1-μm layer of chromium (Cr) film. This section is initially curled due to the different residual stress of Al and Cr. The low temperature (250°C) process ensures that the switch is capable of monolithic integration with microwave and millimeter wave integrated circuits (MMIC). When no dc potential is applied, the actuator is curled far from the signal line of the CPW, and therefore the insertion loss at this `on' state is only 0.2 dB at 10 GHz. Because the metal microactuator is far from the signal line of the CPW at this `on' state, the microwave propagation is hardly disturbed by the microactuator. When an applied electrostatic force pulls the actuator tip down into contact with the signal line of the CPW, it creates a large capacitance between the actuator and the CPW. The isolation at this `off' state is −17 dB at 10 GHz. Maintaining the actuator in the `off' state requires only a very low actuation voltage of 26 V. Once the dc potential is removed, the residual stress of the actuator structure pulls it to the up position. The microactuator moving back and forth between these two switching states, acts like the movement of a frog's tongue. This switch has excellent performance at the wide-band RF frequencies used in transmit/receive modules of wireless communication. This study measured the critical corrupt (activating) voltage and recovery voltage of the microactuator. The 10-ms switching time of this switch is slower than the switching time of solid-state switches.  相似文献   

18.
Li  Mengwei  Liu  Qiuhui  Wu  Qiannan  Han  Yueping 《Microsystem Technologies》2019,25(5):1619-1625

A new radio frequency (RF) micro-electro-mechanical-system (MEMS) single cantilever series contact switch is designed as a low-insertion-loss and low-power electronic component that is intended to provide integrated control of the opening and closing signals of other MEMS devices operating over a wide frequency range (DC–60 GHz). The MEMS switching element consists of an A-type top electrode that is fixed onto coplanar waveguide lines through anchor points to reduce the insertion loss in the on-state of the device. The air gap between the top electrode and the actuation electrode of the designed MEMS switch is optimized to improve the isolation characteristics of the switch. In addition, the switching voltage required is approximately 24 V. The simulation results presented here show that the insertion loss of the switch in the on-state is less than 0.71 dB, while the minimum isolation is 20.69 dB in the off-state at 60 GHz. The proposed RF MEMS switch will be useful for communication devices and test instruments used in broadband applications.

  相似文献   

19.
This article presents an inductively loaded radio frequency (RF) microelectromechanical systems (MEMS) reconfigurable filter with spurious suppression implemented using packaged metal‐contact switches. Both simulation and measurement results show a two‐state, two‐pole 5% filter with a tuning range of 17% from 1.06 GHz to 1.23 GHz, an insertion loss of 1.56–2.28 dB and return loss better than 13 dB over the tuning range. The spurious passband response in both states is suppressed below ?20 dB. The unloaded Q of the filter changes from 127 to 75 as the filter is tuned from 1.06 GHz to 1.23 GHz. The design and full‐wave simulation of a two‐bit RF MEMS tunable filter with inductively loaded resonators and monolithic metal‐contact MEMS switches is also presented to prove the capability of applying the inductive‐loading technique to multibit reconfigurable filters. The simulation results for a two‐bit reconfigurable filter show 2.5 times improvement in the tuning range compared with the two‐state reconfigurable filter due to lower parasitics associated with monolithic metal‐contact MEMS switches in the filter structure. © 2009 Wiley Periodicals, Inc. Int J RF and Microwave CAE, 2009.  相似文献   

20.
This article proposes an asymmetric topology for transmit/receive (T/R) switches and more importantly presents a comparative study of both LC‐tuned and resistive body‐floating techniques for improving the power‐handling capability of the T/R switches in the same 0.18‐μm triple‐well CMOS. It is shown from simulations and measurements that the switches adopting either technique achieve comparable performances. For instance, the switch employing the LC‐tuned body‐floating technique exhibits insertion loss of 1.5 dB, isolation of 23.5 dB, and power‐handling capability of 22.5 dBm at 5.2 GHz, whereas the switch using the resistive body‐floating technique exhibits insertion loss of 1.3 dB, isolation of 24 dB, and power‐handling capability of 22.2 dBm, respectively. Therefore, one can conclude that the asymmetric topology with the resistive body‐floating technique is more suitable for designing T/R switches for wireless local area network applications as it consumes smaller silicon area. © 2010 Wiley Periodicals, Inc. Int J RF and Microwave CAE, 2010.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号