首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 161 毫秒
1.
Two endo-1,4-beta-glucanase genes, designated celA and celB, from a shoyu koji mold Aspergillus oryzae KBN616, were cloned and characterized. The celA gene comprised 877 bp with two introns. The CelA protein consisted of 239 amino acids and was assigned to the cellulase family H. The celB gene comprised 1248 bp with no introns. The CelB protein consisted of 416 amino acids and was assigned to the cellulase family C. Both genes were overexpressed under the promoter of the A. oryzae taka-amylase A gene for purification and enzymatic characterization of CelA and CelB. CelA had a molecular mass of 31 kDa, a pH optimum of 5.0 and temperature optimum of 55 degrees C, whereas CelB had a molecular mass of 53 kDa, a pH optimum of 4.0 and temperature optimum of 45 degrees C.  相似文献   

2.
Two thermostable endocellulases, CelA and CelB, were purified from Thermotoga neapolitana. CelA (molecular mass, 29 kDa; pI 4.6) is optimally active at pH 6.0 at 95 degreesC, while CelB (molecular mass, 30 kDa; pI 4.1) has a broader optimal pH range (pH 6.0 to 6.6) at 106 degreesC. Both enzymes are characterized by a high level of activity (high Vmax value and low apparent Km value) with carboxymethyl cellulose; the specific activities of CelA and CelB are 1,219 and 1,536 U/mg, respectively. With p-nitrophenyl cellobioside the Vmax values of CelA and CelB are 69.2 and 18.4 U/mg, respectively, while the Km values are 0.97 and 0.3 mM, respectively. The major end products of cellulose hydrolysis, glucose and cellobiose, competitively inhibit CelA, and CelB. The Ki values for CelA are 0.44 M for glucose and 2.5 mM for cellobiose; the Ki values for CelB are 0.2 M for glucose and 1.16 mM for cellobiose. CelB preferentially cleaves larger cellooligomers, producing cellobiose as the end product; it also exhibits significant transglycosylation activity. This enzyme is highly thermostable and has half-lives of 130 min at 106 degreesC and 26 min at 110 degreesC. A single clone encoding the celA and celB genes was identified by screening a T. neapolitana genomic library in Escherichia coli. The celA gene encodes a 257-amino-acid protein, while celB encodes a 274-amino-acid protein. Both proteins belong to family 12 of the glycosyl hydrolases, and the two proteins are 60% similar to each other. Northern blots of T. neapolitana mRNA revealed that celA and celB are monocistronic messages, and both genes are inducible by cellobiose and are repressed by glucose.  相似文献   

3.
Dictyostelium cells express a G-protein-coupled adenylyl cyclase, ACA, during aggregation and an atypical adenylyl cyclase, ACG, in mature spores. The ACG gene was disrupted by homologous recombination. acg- cells developed into normal fruiting bodies with viable spores, but spore germination was no longer inhibited by high osmolarity, a fairly universal constraint for spore and seed germination. ACG activity, measured in aca-/ACG cells, was strongly stimulated by high osmolarity with optimal stimulation occurring at 200 milliosmolar. RdeC mutants, which display unrestrained protein kinase A (PKA) activity and a cell line, which overexpresses PKA under a prespore specific promoter, germinate very poorly, both at high and low osmolarity. These data indicate that ACG is an osmosensor controlling spore germination through activation of protein kinase A.  相似文献   

4.
Spore germination is a defined developmental process that marks a critical point in the life cycle of Dictyostelium discoideum. Upon germination the environmental conditions must be conducive to cell growth to ensure survival of emerged amoebae. However, the signal transduction pathways controlling the various aspects of spore germination in large part remain to be elucidated. We have used degenerate PCR to identify dhkB, a two-component histidine kinase, from D. discoideum. DhkB is predicted to be a transmembrane hybrid sensor kinase. The dhkB-null cells develop with normal timing to give what seem to be mature fruiting bodies by 22 to 24 h. However, over the next several hours, the ellipsoidal and encapsulated spores proceed to swell and germinate in situ within the sorus and thus do not respond to the normal inhibitors of germination present within the sorus. The emerged amoebae dehydrate due to the high osmolarity within the sorus, and by 72 h 4% or less of the amoebae remain as spores, while most cells are now nonviable. Precocious germination is suppressed by ectopic activation of or expression of cAMP-dependent protein kinase A. Additionally, at 24 h the intracellular concentration of cAMP of dhkB- spores is 40% that of dhkB+ spores. The results indicate that DHKB regulates spore germination, and a functional DHKB sensor kinase is required for the maintenance of spore dormancy. DHKB probably acts by maintaining an active PKA that in turn is inhibitory to germination.  相似文献   

5.
6.
The integrity of spores formed by mutant strains of Dictyostelium discoideum lacking the major spore coat proteins, SP96, SP70, or SP60, was compared to that of wild-type strains. Single, double, and triple knock-out strains developed normally and produced spores which were indistinguishable from wild-type spores by light or electron microscopy. However, the mutant strains were susceptable to staining with the lectin, ricin A, which recognizes a galactose-rich polysaccharide that is normally hidden by overlying spore coat proteins. The intensity of staining with fluorescently labeled ricinA increased as the spore coat proteins were incrementally lost. While these results indicate that the major outer spore coat proteins are not essential for the construction of a multi-layered spore coat in Dictyostelium, they show that the spores are more porous which might make them at risk to predators before germination.  相似文献   

7.
A homolog of the Serum Response Factor (SRF) has been isolated from Dictyostelium discoideum and its function studied by analyzing the consequences of its gene disruption. The MADS-box region of Dictyostelium SRF (DdSRF) is highly conserved with those of the human, Drosophila and yeast homologs. srfA is a developmentally regulated gene expressed in prespore and spore cells. This gene plays an essential role in sporulation as its disruption leads to abnormal spore morphology and loss of viability. The mutant spores were round and cellulose deposition seemed to be partially affected. Initial prestalk and prespore cell differentiation did not seem to be compromised in the mutant since the expression of several cell-type-specific markers were found to be unaffected. However, the mRNA level of the spore marker spiA was greatly reduced. Activation of the cAMP-dependent protein kinase (PKA) by 8-Br-cAMP was not able to fully bypass the morphological defects of srfA- mutant spores, although this treatment induced spiA mRNA expression. Our results suggest that DdSRF is required for full maturation of spores and participates in the regulation of the expression of the spore-coat marker spiA and probably other maturation genes necessary for proper spore cell differentiation.  相似文献   

8.
The spore coat of Dictyostelium contains nine different proteins and cellulose. Interactions between protein and cellulose were investigated using an in vitro binding assay. Proteins extracted from coats with urea and 2-mercaptoethanol could, after removal of urea by gel filtration, efficiently bind to particles of cellulose (Avicel), but not Sephadex or Sepharose. Two proteins, SP85 and SP35, were enriched in the reconstitution, and they retained their cellulose binding activities after purification by ion exchange chromatography under denaturing conditions to suppress protein--protein interactions. Neither protein exhibited cellulase activity, though under certain conditions SP85 copurified with a cellulase activity which appeared after germination. Amino acid sequencing indicated that SP85 and SP35 are encoded by the previously described pspB and psvA genes. This was confirmed for SP85 by showing that natural M(r) polymorphisms correlated with changes in the number of tetrapeptide-encoding sequence repeats in pspB. Using PCR to reconstruct missing elements from the recombinogenic middle region of pspB, SP85 was shown to consist of three sequence domains separated by two groups of the tetrapeptide repeats. Expression of partial pspB cDNAs in Escherichia coli showed that cellulose-binding activity resided in the Cys-rich COOH-terminal domain of SP85. This cellulose-binding activity can explain SP85's ultrastructural colocalization with cellulose in vivo. Amino acid composition and antibody binding data showed that SP35 is derived from the Cys-rich N-terminal region of the previously described psvA protein. SP85 and SP35 may link other proteins to cellulose during coat assembly and germination.  相似文献   

9.
The spore germination in Dictyostelium discoideum consists of four stages: activation, postactivation lag, swelling and emergence. Ultraviolet irradiation (total fluence of 250 J/m(2)) of spores at any time prior to late spore swelling allows full swelling, but inhibits the emergence of myxamoebae. In the case of freshly activated spores, a UV exposure time of 30 s (total fluence of 50 J/m(2)) is sufficient to reduce emergence to about 6% when measured after 24 h of incubation. This same fluence results in about 10% viability as measured by plaque forming ability. Experiments utilizing "fractionated exposures' result in the same percentage inhibition of emergence as that found for "single exposures' provided the total fluence is equivalent. The higher fluences (250 J/m(2)) which completely prevent emergence, do not affect the endogenous oxygen uptake of spores during swelling. Ultraviolet light irradiated spores respond to the same activation and deactivation treatments as control unirradiated spores. Ultraviolet irradiation after late spore swelling allows emergence to occur in only a small fraction of the population. This fraction of cells which can emerge after UV treatment is said to have passed a "competence point', which is believed to be the time when all the events necessary for emergence have been completed. Though the sites of UV inactivation in spores can only be postulated at present, it is apparent that the initial stages of germination (activation, postactivation lag and spore swelling) occur independently of the UV sensitive sites. The final stage of germination (emergence), however, is dependent on UV sensitive functions.  相似文献   

10.
Freshly formed wild type Dictyostelium discoideum spores are constitutively dormant, and thus require an activation treatment to germinate. Wild type spores may germinate without an activation treatment (autoactivate) after a period of ageing (maturation) in the intact fruiting body. Mutants have been isolated which autoactivate without the need for ageing. Autoactivation of mutant and aged wild type spores appears to occur by identical mechanisms; thus the mutation may involve premature maturation. Autoactivation is mediated by autoactivator substances released from spores as they spontaneously swell. These factors are readily chromatographed, and elute from a Biogel P2 column in three peaks of activity. One activity peak appears only after spores have begun to germinate. No autoactivator substances are released from heat activated spores. Autoactivation is sensitive to cychloheximide, and may result from altered spore permeability. Autoactivation is likely to be the mechanism of D. discoideum spore germination in nature.  相似文献   

11.
Previous investigators using the extent of uptake of the weak base methylamine to measure internal pH have shown that the pH in the core region of dormant spores of Bacillus megaterium is 6.3 to 6.5. Elevation of the internal pH of spores by 1.6 U had no significant effect on their degree of dormancy or their heat or ultraviolet light resistance. Surprisingly, the rate of methylamine uptake into dormant spores was slow (time for half-maximal uptake, 2.5 h at 24 degrees C). Most of the methylamine taken up by dormant spores was rapidly (time for half-maximal uptake, less than 3 min) released during spore germination as the internal pH of spores rose to approximately 7.5. This rise in internal spore pH took place before dipicolinic acid release, was not abolished by inhibition of energy metabolism, and during germination at pH 8.0 was accompanied by a decrease in the pH of the germination medium. Also accompanying the rise in internal spore pH during germination was the release of greater than 80% of the spores K+ and Na+. The K+ was subsequently reabsorbed in an energy-dependent process. These data indicate (i) that between pH 6.2 and 7.8 internal spore pH has little effect on dormant spore properties, (ii) that there is a strong permeability barrier in dormant spores to movement of charged molecules and small uncharged molecules, and (iii) that extremely early in spore germination this permeability barrier is breached, allowing rapid release of internal monovalent cations (H+, Na+, and K+).  相似文献   

12.
Two acid-soluble, low-molecular-weight basic proteins comprise approximately 20% of the protein in dormant spores of Clostridium bifermentans. Both of these proteins are rapidly degraded during spore germination.  相似文献   

13.
14.
Zinc release is the first quantitatively significant event detected during the triggering of Bacillus megaterium KM spore germination. Of the total spore Zn2+ pool 25% is released from non-heat-activated spores within 4 min of triggering germination. During this period only 10% of the spore population becomes irreversibly committed to germinate. The investigation of a putative role for Zn2+ in the germination trigger mechanism has established a relationship between the rate and extent of Zn2+ release and the stimulation of spore germination by heat activation. Furthermore, a correlation can be demonstrated between the extent of zinc release from spore populations and the time required to obtain 50% commitment of these populations to germinate over a wide temperature range. These findings have been used to expand a recently published model for the triggering of bacterial spore germination.  相似文献   

15.
Dictyostelium discoideum is among the best characterized organisms for the study of receptor/guanine nucleotide binding protein-mediated control of differentiation. Dictyostelium grow unicellularly but form fully differentiated multicellular organisms through a developmental program regulated by secreted cAMP activating specific cell-surface receptors. Dictyostelium respond differentially to cAMP at different developmental stages. During early development, expression of certain genes is induced by low-level oscillations of extracellular cAMP. Later, continuous, high cAMP concentrations will promote expression of specific genes in multicellular structures. Here, we show that the cAMP receptor gene CAR1, which is essential for development, utilizes two promoters that are activated at distinct stages of development and respond to different extracellular cAMP conditions. One promoter is active with low-level oscillations of cAMP; exposure to high cAMP concentrations will repress this promoter and induce a second promoter. The CAR1 mRNAs are alternatively spliced but encode identical proteins. Thus, through differential sensitivity to its own ligand, cAMP, two promoters and alternative splicing regulate CAR1 expression during Dictyostelium development.  相似文献   

16.
We have partially purified the protein and isolated the glcS gene for glycogen synthase in Dictyostelium. glcS mRNA is present throughout development and is the product of a single gene coding for 775 amino acids, with a predicted molecular mass of 87 kD. The sequence is highly similar to glycogen synthase from human muscle, yeast, and rat liver, diverging significantly only at the amino and carboxy termini. Phosphorylation and UDPG binding sites are conserved, with K(m) values for UDPG being comparable to those determined for other organisms, but in vitro phosphorylation failing to convert between the G6P-dependent (D) and -independent (I) forms. Enzyme activity is relatively constant throughout the life cycle: the I form of the enzyme isolates with the soluble fraction in amoebae, switches to the D form, becomes pellet-associated during early development, and finally reverts during late development to the I form, which again localizes to the soluble fraction. Deletion analysis of the promoter reveals a GC-rich element which, when deleted, abolishes expression of glcS.  相似文献   

17.
Shortly after initiation of Dictyostelium fruiting body formation, prespore cells begin to differentiate into non-motile spores. Although these cells lose their ability to move, they are, nevertheless, elevated to the tip of the stalk. Removal of the amoeboid anterior-like cells, located above the differentiating spores in the developing fruiting body, prevents further spore elevation although the stalk continues to elongate. Furthermore, replacement of the anterior-like cells with anterior-like cells from another fruiting body largely restores the ability to lift the spores to the top of the stalk. However, if amoeboid prestalk cells are used to replace the anterior-like cells, there is no restoration of spore elevation. Finally, when a droplet of mineral oil replaces differentiating spores, it is treated as are the spores: the mineral oil is elevated in the presence of anterior-like cells and becomes arrested on the stalk in the absence of anterior-like cells. Because a similar droplet of mineral oil is totally ignored by slug tissue, it appears that there is a dramatic transformation in the treatment of non-motile matter at this point in Dictyostelium development.  相似文献   

18.
19.
Phase-contrast microscopy coupled with image analysis has been used to study the germination of single spores of Clostridium botulinum and to investigate the variation of germination lag of individual spores in a population (biovariability). The experiment was repeated at five different temperatures between 20 degrees C and 37 degrees C to look at the effect of temperature on the biovaribility of the spore germination. Data analysis shows that the germination lag distribution is skewed, with a tail, and that its shape is affected by the temperature. The origin of this biovariability is not exactly known, but could be due to a distribution of characteristics (e.g. permeabilities) or molecules (e.g. lytic enzymes) in the spore population. The method developed in this study will help us to describe and better understand the kinetics of spore germination and how this is influence by different environmental factors such as temperature and other factors that influence germination.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号