首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
We give drawings of a complete graphK n withO(n 4 log2 g/g) many crossings on an orientable or nonorientable surface of genusg 2. We use these drawings ofK n and give a polynomial-time algorithm for drawing any graph withn vertices andm edges withO(m 2 log2 g/g) many crossings on an orientable or nonorientable surface of genusg 2. Moreover, we derive lower bounds on the crossing number of any graph on a surface of genusg 0. The number of crossings in the drawings produced by our algorithm are within a multiplicative factor ofO(log2 g) from the lower bound (and hence from the optimal) for any graph withm 8n andn 2/m g m/64.The research of the third and the fourth authors was partially supported by Grant No. 2/1138/94 of the Slovak Academy of Sciences and by EC Cooperative action IC1000 Algorithms for Future Technologies (Project ALTEC). A preliminary version of this paper was presented at WG93 and published in Lecture Notes in Computer Science, Vol. 790, 1993, pp. 388–396.  相似文献   

2.
We show that a number of geometric problems can be solved on a n × n mesh-connected computer (MCC) inO(n) time, which is optimal to within a constant factor, since a nontrivial data movement on an MCC requires (n) time. The problems studied here include multipoint location, planar point location, trapezoidal decomposition, intersection detection, intersection of two convex polygons, Voronoi diagram, the largest empty circle, the smallest enclosing circle, etc. TheO(n) algorithms for all of the above problems are based on the classical divide-and-conquer problem-solving strategy.This work was supported in part by the National Science Foundation under Grant DCR 8420814. A preliminary version was presented in the 1987 FJCC, Dallas, TX.  相似文献   

3.
Parallel integer sorting using small operations   总被引:1,自引:0,他引:1  
We consider the problem of sortingn integers in the range [0,n c -1], wherec is a constant. It has been shown by Rajasekaran and Sen [14] that this problem can be solved optimally inO(logn) steps on an EREW PRAM withO(n) n -bit operations, for any constant >O. Though the number of operations is optimal, each operation is very large. In this paper, we show thatn integers in the range [0,n c -1] can be sorted inO(logn) time withO(nlogn)O(1)-bit operations andO(n) O(logn)-bit operations. The model used is a non-standard variant of an EREW PRAMtthat permits processors to have word-sizes ofO(1)-bits and (logn)-bits. Clearly, the speed of the proposed algorithm is optimal. Considering that the input to the problem consists ofO (n logn) bits, the proposed algorithm performs an optimal amount of work, measured at the bit level.This work was partially supported by The Northeast Parallel Architectures Center (NPAC) at Syracuse University, Syracuse, NY 13244 and The Rome Air Development Center, under contract F30602-88-D-0027.  相似文献   

4.
Summary Efficient algorithms for computing the longest common subsequence (LCS for short) are discussed. O(pn) algorithm and O(p(m-p) log n) algorithm [Hirschberg 1977] seem to be best among previously known algorithms, where p is the length of an LCS and m and n are the lengths of given two strings (mn). There are many applications where the expected length of an LCS is close to m.In this paper, O(n(m-p)) algorithm is presented. When p is close to m (in other words, two given strings are similar), the algorithm presented here runs much faster than previously known algorithms.  相似文献   

5.
We present an algorithm for computingL 1 shortest paths among polygonal obstacles in the plane. Our algorithm employs the continuous Dijkstra technique of propagating a wavefront and runs in timeO(E logn) and spaceO(E), wheren is the number of vertices of the obstacles andE is the number of events. By using bounds on the density of certain sparse binary matrices, we show thatE =O(n logn), implying that our algorithm is nearly optimal. We conjecture thatE =O(n), which would imply our algorithm to be optimal. Previous bounds for our problem were quadratic in time and space.Our algorithm generalizes to the case of fixed orientation metrics, yielding anO(n–1/2 log2 n) time andO(n–1/2) space approximation algorithm for finding Euclidean shortest paths among obstacles. The algorithm further generalizes to the case of many sources, allowing us to compute anL 1 Voronoi diagram for source points that lie among a collection of polygonal obstacles.Partially supported by a grant from Hughes Research Laboratories, Malibu, California and by NSF Grant ECSE-8857642. Much of this work was done while the author was a Ph.D. student at Stanford University, under the support of a Howard Hughes Doctoral Fellowship, and an employee of Hughes Research Laboratories.  相似文献   

6.
We construct nonblocking networks that are efficient not only as regards their cost and delay, but also as regards the time and space required to control them. In this paper we present the first simultaneous weakly optimal solutions for the explicit construction of nonblocking networks, the design of algorithms and data-structures. Weakly optimal is in the sense that all measures of complexity (size and depth of the network, time for the algorithm, space for the data-structure, and number of processor-time product) are within one or more logarithmic factors of their smallest possible values. In fact, we construct a scheme in which networks withn inputs andn outputs have sizeO(n(logn)2) and depthO(logn), and we present deterministic and randomized on-line parallel algorithms to establish and abolish routes dynamically in these networks. In particular, the deterministic algorithm usesO((logn)5) steps to process any number of transactions in parallel (with one processor per transaction), maintaining a data structure that useO(n(logn)2) words.  相似文献   

7.
Algebraic techniques are used to prove that any circuit constructed with MOD q gates that computes the AND function must use (n) gates at the first level. The best bound previously known to be valid for arbitraryq was (logn).  相似文献   

8.
We introduce a generic problem component that captures the most common, difficult kernel of many problems. This kernel involves general prefix computations (GPC). GPC's lower bound complexity of (n logn) time is established, and we give optimal solutions on the sequential model inO(n logn) time, on the CREW PRAM model inO(logn) time, on the BSR (broadcasting with selective reduction) model in constant time, and on mesh-connected computers inO(n) time, all withn processors, plus anO(log2 n) time solution on the hypercube model. We show that GPC techniques can be applied to a wide variety of geometric (point set and tree) problems, including triangulation of point sets, two-set dominance counting, ECDF searching, finding two-and three-dimensional maximal points, the reconstruction of trees from their traversals, counting inversions in a permutation, and matching parentheses.work partially supported by NSF IRI/8709726work partially supported by NSERC.  相似文献   

9.
Esko Ukkonen 《Algorithmica》1990,5(1):313-323
Approximate shortest common superstrings for a given setR of strings can be constructed by applying the greedy heuristics for finding a longest Hamiltonian path in the weighted graph that represents the pairwise overlaps between the strings inR. We develop an efficient implementation of this idea using a modified Aho-Corasick string-matching automaton. The resulting common superstring algorithm runs in timeO(n) or in timeO(n min(logm, log¦¦)) depending on whether or not the goto transitions of the Aho-Corasick automaton can be implemented by direct indexing over the alphabet . Heren is the total length of the strings inR andm is the number of such strings. The best previously known method requires timeO(n logm) orO(n logn) depending on the availability of direct indexing.This work was supported by the Academy of Finland.  相似文献   

10.
The two basic performance parameters that capture the complexity of any VLSI chip are the area of the chip,A, and the computation time,T. A systematic approach for establishing lower bounds onA is presented. This approach relatesA to the bisection flow, . A theory of problem transformation based on , which captures bothAT 2 andA complexity, is developed. A fundamental problem, namely, element uniqueness, is chosen as a computational prototype. It is shown under general input/output protocol assumptions that any chip that decides ifn elements (each with (1+)lognbits) are unique must have =(nlogn), and thus, AT2=(n 2log2 n), andA= (nlogn). A theory of VLSI transformability reveals the inherentAT 2 andA complexity of a large class of related problems.This work was supported in part by the Semiconductor Research Corporation under contract RSCH 84-06-049-6.  相似文献   

11.
This paper investigates the optimization problem when executing a join in a distributed database environment. The minimization of the communication cost for sending data through links has been adopted as an optimization criterion. We explore in this paper the approach of judiciously using join operations as reducers in distributed query processing. In general, this problem is computationally intractable. A restriction of the execution of a join in a pre-defined combinatorial order leads to a possible solution in polynomial time. An algorithm for a chain query computation has been proposed in [21]. The time complexity of the algorithm isO(m 2 n 2+m 3 n), wheren is the number of sites in the network, andm is the number of relations (fragments) involved in the join. In this paper, we firstly present a proof of the intuitively well understood fact—that the eigenorder of a chain join will be the best pre-defined combinatorial order to implement the algorithm in [21]. Secondly, we show a sufficient and necessary condition for a chain query with the eigenordering to be a simple query. For the process of the class of simple queries, we show a significant reduction of the time complexity fromO(m 2 n 2+m 3 n) toO(mn+m 2). It is encouraging that, in practice, the most frequent queries belong to the category of simple queries. Editor: Peter Apers  相似文献   

12.
This paper is a study of the existence of polynomial time Boolean connective functions for languages. A languageL has an AND function if there is a polynomial timef such thatf(x,y) L x L andy L. L has an OR function if there is a polynomial timeg such thatg(x,y) xL oryL. While all NP complete sets have these functions, Graph Isomorphism, which is probably not complete, is also shown to have both AND and OR functions. The results in this paper characterize the complete sets for the classes Dp and pSAT[O(logn)] in terms of AND and OR and relate these functions to the structure of the Boolean hierarchy and the query hierarchies. Also, this paper shows that the complete sets for the levels of the Boolean hierarchy above the second level cannot have AND or OR unless the polynomial hierarchy collapses. Finally, most of the structural properties of the Boolean hierarchy and query hierarchies are shown to depend only on the existence of AND and OR functions for the NP complete sets.The first author was supported in part by NSF Research Grants DCR-8520597 and CCR-88-23053, and by an IBM Graduate Fellowship.  相似文献   

13.
Given an array ofn input numbers, therange-maxima problem is that of preprocessing the data so that queries of the type what is the maximum value in subarray [i..j] can be answered quickly using one processor. We present a randomized preprocessing algorithm that runs inO(log* n) time with high probability, using an optimal number of processors on a CRCW PRAM; each query can be processed in constant time by one processor. We also present a randomized algorithm for a parallel comparison model. Using an optimal number of processors, the preprocessing algorithm runs inO( (n)) time with high probability; each query can be processed inO ( (n)) time by one processor. (As is standard, (n) is the inverse of Ackermann function.) A constant time query can be achieved by some slowdown in the performance of the preprocessing stage.  相似文献   

14.
A faster divide-and-conquer algorithm for constructing delaunay triangulations   总被引:15,自引:0,他引:15  
Rex A. Dwyer 《Algorithmica》1987,2(1):137-151
An easily implemented modification to the divide-and-conquer algorithm for computing the Delaunay triangulation ofn sites in the plane is presented. The change reduces its (n logn) expected running time toO(n log logn) for a large class of distributions that includes the uniform distribution in the unit square. Experimental evidence presented demonstrates that the modified algorithm performs very well forn216, the range of the experiments. It is conjectured that the average number of edges it creates—a good measure of its efficiency—is no more than twice optimal forn less than seven trillion. The improvement is shown to extend to the computation of the Delaunay triangulation in theL p metric for 1<p.This research was supported by National Science Foundation Grants DCR-8352081 and DCR-8416190.  相似文献   

15.
We consider the half-space range-reporting problem: Given a setS ofn points in d, preprocess it into a data structure, so that, given a query half-space , allk points ofS can be reported efficiently. We extend previously known static solutions to dynamic ones, supporting insertions and deletions of points ofS. For a given parameterm,n m n d/2 and an arbitrarily small positive constant , we achieveO(m 1+) space and preprocessing time, O((n/m d/2 logn+k) query time, and O(m1+n) amortized update time (d 3). We present, among others, the following applications: an O(n1+)-time algorithm for computing convex layers in 3, and an output sensitive algorithm for computing a level in an arrangements of planes in 3, whose time complexity is O((b+n) n, whereb is the size of the level.Work by the first author has been supported by National Science Foundation Grant CCR-91-06514. A preliminary version of this paper appeared in Agarwalet al. [2], which also contains the results of [20] on dynamic bichromatic closest pair and minimum spanning trees.  相似文献   

16.
RL \subseteq SC     
We show that any randomized logspace algorithm (running in polynomial time with bounded two-sided error) can be simulated deterministically in polynomial time andO(log2 n) space. This puts RL in SC, Steve's Class In particular, we get a polynomial time,O(log2 n) space algorithm for thest-connectivity problem on undirected graphs.Subject classifications. 68Q10, 68Q15, 68Q25.  相似文献   

17.
This paper considers the problem of permutation packet routing on a n×n mesh-connected array of processors. Each node in the array is assumed to be independently faulty with a probability bounded above by a valuep. This paper gives a routing algorithm which, ifp 0.29, will with very high probability route every packet that can be routed inO(n logn) steps with queue lengths that areO(log2 n). Extensions to higher-dimensional meshes are given.  相似文献   

18.
A theory is developed for the construction of carry-save networks with minimal delay, using a given collection of carry-save adders each of which may receive inputs and produce outputs using several different representation standards.The construction of some new carry-save adders is described. Using these carry-save adders optimally, as prescribed by the above theory, we get {, , }-circuits of depth 3.48 log2 n and {, , }-circuits of depth 4.95 log2 n for the carry-save addition ofn numbers of arbitrary length. As a consequence we get multiplication circuits of the same depth. These circuits put out two numbers whose sum is the result of the multiplication. If a single output number is required then the depth of the multiplication circuits increases respectively to 4.48 log2 n and 5.95 log2 n.We also get {, , }-formulae of sizeO (n 3.13) and {, }-formulae of sizeO (n 4.57) for all the output bits of a carry-save addition ofn numbers. As a consequence we get formulae of the same size for the majority function and many other symmetric Boolean functions.  相似文献   

19.
An optimalO(log logn)-time CRCW-PRAM algorithm for computing all period lengths of a string is presented. Previous parallel algorithms compute the period only if it is shorter than half of the length of the string. The algorithm can be used to find all initial palindromes of a string in the same time and processor bounds. Both algorithms are the fastest possible over a general alphabet. We derive a lower bound for finding initial palindromes by modifying a known lower bound for finding the period length of a string [9]. Whenp processors are available the bounds become (n/p+log1+p/n2p).This work was partially supported by NSF Grant CCR-90-14605. D. Breslauer was partially supported by an IBM Graduate Fellowship while studying at Columbia University and by a European Research Consortium for Informatics and Mathematics postdoctoral fellowship.  相似文献   

20.
Thek-Delaunay tree extends the Delaunay tree introduced in [1], and [2]. It is a hierarchical data structure that allows the semidynamic construction of the higher-order Voronoi diagrams of a finite set ofn points in any dimension. In this paper we prove that a randomized construction of thek-Delaunay tree, and thus of all the orderk Voronoi diagrams, can be done inO(n logn+k 3n) expected time and O(k2n) expected storage in the plane, which is asymptotically optimal for fixedk. Our algorithm extends tod-dimensional space with expected time complexityO(k (d+1)/2+1 n (d+1)/2) and space complexityO(k (d+1)/2 n (d+1)/2). The algorithm is simple and experimental results are given.This work has been supported in part by the ESPRIT Basic Research Action No. 3075 (ALCOM).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号