首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
采用浮力修正的k-ε湍流模型和涡团耗散(EDC)湍流燃烧模型,对旋流燃烧室内具有不同初始切向动量或旋流数的受浮力作用的甲烷湍流火焰进行了数值模拟,得到三组工况下的气体温度场、组分体积分数场、速度场和湍流脉动特性的分布,并与试验测量数据进行了比较.结果表明:浮力对初始切向动量或旋流数较高的湍流火焰有更强的影响.  相似文献   

2.
以甲烷/空气的湍流射流扩散燃烧为基础。利用k-ε双方程模型和混合分数方程模型的耦合。依据湍流扩散燃烧中整个区域的混合分数场,给出火焰面形状、尺度随过量空气系数的变化规律。模拟结果表明混合分数方程确定火焰面的位置是行之有效的方法。  相似文献   

3.
基于SIMPLE算法的湍流场数值模拟   总被引:1,自引:0,他引:1  
k-ε模型及其双方程模式成功应用于湍流场的流动分析,并使湍流流动的质量、动量、能量基本方程组可以统一表达。SIMPLE算法是流体流场数值模拟的最重要方法。通过VC和MATLAB的混合编程用SIMPLE算法,实现了湍流场的数值模拟。基于SIMPLE算法对一个热流交汇扩散的问题做了数值求解,展示了内部湍流场的分布情况。  相似文献   

4.
本文数值模拟了煤粉旋流火焰燃烧过程,燃烧数值计算包括理论物理模型建立,数值方法两个大部分,计算模型处理了气相湍流与燃烧、气固两相流动、煤颗粒燃烧过程和辐射传热等物理化学过程,以k-ε模型模拟湍流流动;PDF法模拟气相扩散火焰燃烧;颗粒运动计算颗粒运动少颗粒湍流浓度方程模拟颗粒湍流扩散;通量法计算火焰辐射传热,煤粉颗粒复杂燃烧模型计算了颗粒尺寸、形状变化和颗粒孔隙内部燃烧、表面平度对整个颗粒的燃烧过程影响。计算获得了气相速度分布场、气相k和ε分布场、气相温度场、气相组份场和颗粒浓度场及运动过程,揭示了煤粉复合旋流燃烧特性。  相似文献   

5.
一种离心力修正的湍流模型及其在数值模拟中的应用   总被引:3,自引:0,他引:3  
通过分析强旋流场中离心力的作用,提出了考虑湍流脉动中离心力作功的湍流模型(k-ε-cf模型)。模型的特征参数根据大涡参数和小涡参数的几何平均得到,其中旋涡的频率与热线测量实验结果一致。运用k-ε-cf模型对一同轴旋转分层流燃烧器空气动力场进行了数值模拟,计算结果与实验数据吻合良好,比标准k-ε模型结果有较大改进。图4参4  相似文献   

6.
不同湍流模型对强旋流动的数值模拟   总被引:12,自引:0,他引:12  
在径向浓淡旋流煤粉燃烧器单相冷态试验的基础上,充分考虑旋转对湍流流场的影响,有用k-ε双方程及其修正模型和二阶矩雷诺应力模型(DSM),对流旋煤粉燃烧器出口强旋流场进行了数值模拟。数值计算结果表明:k-ε双方程模型定性上可以预报出强旋流场的主要特点,但回流区的预报区域偏大,轴向速度的预报结果与试验值有一定差距,预报的回流速度偏低,速度衰减过快,这是由于k-ε湍流模型采用了较多的简化和未考虑旋转对湍流的影响。采用基于旋转体系使湍流脉动加强和削弱两种作用的修正方法对k-ε双方程的湍流耗散率方程进行修正。计算结果表明:从旋转体系可使湍流能量加强出发的Bardina涡量修正方法,预报回流区范围较标准k-ε湍流模型缩小,更加接近于试验值。其计算结果优于使湍流 脉动削弱的Richardson修正。DSM模型对轴向回流速度和切向速度后期分布预报结果较上述模型有较大改善,可体现出湍流雷诺应力非均匀各向异性的特点,虽然此模型仍有收敛速度慢、计算时间长的缺点,但对预报强旋流动是一个精度较高、极具潜力的方法 。图9参11  相似文献   

7.
陈庆光  徐忠  张永建 《动力工程》2002,22(6):2015-2019,2105
应用标准k-ε模型和一种重正化群(RNG)k-ε模型,对半封闭轴对称湍流冲击射流场进行了数值模拟。通过两种模型计算结果的比较以及与参考文献中LDV测量结果的比较,评价了RNGk-ε模型对冲击射流场的数值预测能力。最后,根据数值模拟的结果,从流体动力学角度分析了冲击射流场的结构特性。  相似文献   

8.
简单射流流化床的数值模拟   总被引:3,自引:0,他引:3  
以双欧拉模型及颗粒动力学理论为基础,应用Fluent软件进行了简单射流流化床的模拟.经过不同湍流模型下的二维、三维计算结果分析,并与实验值比较,初步探讨湍流模型和二维、三维模拟方法对稠密气固流动数值模拟的影响,发现RNG k-ε湍动方程较标准k-ε湍流模型提高了稠密气固两相流数值模拟的准确性,三维模拟计算的流场比二维模拟更准确.  相似文献   

9.
利用数值模拟方法,选用标准k-ε湍流模型,化学反应采用涡-耗散模型,辐射模型应用P-1辐射模型,研究进油口尺寸、进气口尺寸一定,煤焦油蒸气速度和助燃气体速度不变,富氧条件下不同含氧助燃气体对燃烧室火焰空间温度场和气流场压力场的影响。结果表明,助燃气体含氧量越高,火焰温度越高,燃烧速率越快,尾气排放所带走热量越小,火焰空间温度场分布梯度变大。数值模拟结果对于煤焦油用于工业燃烧条件的设计和操作具有一定的理论指导和实践意义。  相似文献   

10.
用RNG k-ε模型计算内燃机缸内湍流流动   总被引:3,自引:0,他引:3  
应用快速畸变假设对RNG k-ε湍流模型进行压缩性修正后,将其应用于内燃机缸内湍流流动的数值模拟,计算采用任意拉格朗日-欧拉法.给出了用RNG k-ε模型算得的结果,并与标准的k-ε模型算得的结果和实验结果进行了对比.结果表明,用RNG k-ε湍流模型算得的结果比k-ε模型算得的结果有所改进,此模型适合于计算内燃机缸内湍流流动.  相似文献   

11.
Woody biomass in Finland and Sweden comprises mainly four wood species: spruce, pine, birch and aspen. To study the ash, which may cause problems for the combustion device, one tree of each species were cut down and prepared for comparisons with fuel samples. Well-defined samples of wood, bark and foliage were analyzed on 11 ash-forming elements: Si, Al, Fe, Ca, Mg, Mn, Na, K, P, S and Cl. The ash content in the wood tissues (0.2–0.7%) was low compared to the ash content in the bark tissues (1.9–6.4%) and the foliage (2.4–7.7%). The woods’ content of ash-forming elements was consequently low; the highest contents were of Ca (410–1340 ppm) and K (200–1310), followed by Mg (70–290), Mn (15–240) and P (0–350). Present in the wood was also Si (50–190), S (50–200) and Cl (30–110). The bark tissues showed much higher element contents; Ca (4800–19,100 ppm) and K (1600–6400) were the dominating elements, followed by Mg (210–2400), P (210–1200), Mn (110–1100) and S (310–750), but the Cl contents (40–330) were only moderately higher in the bark than in the wood. The young foliage (shoots and deciduous leaves) had the highest K (7100–25,000 ppm), P (1600–5300) and S (1100–2600) contents of all tissues, while the shoots of spruce had the highest Cl contents (820–1360) and its needles the highest Si content (5000–11,300). This paper presented a new approach in fuel characterization: the method excludes the presence of impurities, and focus on different categories of plant tissues. This made it possible to discuss the contents of ash element in a wide spectrum of fuel-types, which are of large importance for the energy production in Finland and Sweden.  相似文献   

12.
正1 ABSTRACT To reduce the effect of global warming on our climate,the levels of CO2emissions should be reduced.One way to do this is to increase the efficiency of electricity production from fossil fuels.This will in turn reduce the amount of CO2emissions for a given power output.Using US practice for efficiency calculations,then a move from a typical US plant running at 37%efficiency to a 760℃/38.5 MPa(1 400/5 580 psi)plant running at 48%efficiency would reduce CO2emissions by 170kg/MW.hr or 25%.  相似文献   

13.
The purpose of this paper is to illustrate the advantages of the direct surface-curvature distribution blade-design method, originally proposed by Korakianitis, for the leading-edge design of turbine blades, and by extension for other types of airfoil shapes. The leading edge shape is critical in the blade design process, and it is quite difficult to completely control with inverse, semi-inverse or other direct-design methods. The blade-design method is briefly reviewed, and then the effort is concentrated on smoothly blending the leading edge shape (circle or ellipse, etc.) with the main part of the blade surface, in a manner that avoids leading-edge flow-disturbance and flow-separation regions. Specifically in the leading edge region we return to the second-order (parabolic) construction line coupled with a revised smoothing equation between the leading-edge shape and the main part of the blade. The Hodson–Dominy blade has been used as an example to show the ability of this blade-design method to remove leading-edge separation bubbles in gas turbine blades and other airfoil shapes that have very sharp changes in curvature near the leading edge. An additional gas turbine blade example has been used to illustrate the ability of this method to design leading edge shapes that avoid leading-edge separation bubbles at off-design conditions. This gas turbine blade example has inlet flow angle 0°, outlet flow angle −64.3°, and tangential lift coefficient 1.045, in a region of parameters where the leading edge shape is critical for the overall blade performance. Computed results at incidences of −10°,   −5°,   +5°,   +10° are used to illustrate the complete removal of leading edge flow-disturbance regions, thus minimizing the possibility of leading-edge separation bubbles, while concurrently minimizing the stagnation pressure drop from inlet to outlet. These results using two difficult example cases of leading edge geometries illustrate the superiority and utility of this blade-design method when compared with other direct or inverse blade-design methods.  相似文献   

14.
A chemical reactor for the steam-gasification of carbonaceous particles (e.g. coal, coke) is considered for using concentrated solar radiation as the energy source of high-temperature process heat. A two-phase reactor model that couples radiative, convective, and conductive heat transfer to the chemical kinetics is applied to optimize the reactor geometrical configuration and operational parameters (feedstock's initial particle size, feeding rates, and solar power input) for maximum reaction extent and solar-to-chemical energy conversion efficiency of a 5 kW prototype reactor and its scale-up to 300 kW. For the 300 kW reactor, complete reaction extent is predicted for an initial feedstock particle size up to 35 μm at residence times of less than 10 s and peak temperatures of 1818 K, yielding high-quality syngas with a calorific content that has been solar-upgraded by 19% over that of the petcoke gasified.  相似文献   

15.
16.
汽轮机数字电液调节系统挂闸异常的技术完善   总被引:1,自引:0,他引:1  
分析了200MW汽轮机数字电液调节系统在运行中存在的挂闸异常问题,采取了相应的技术处理措施,且运行实践效果良好。  相似文献   

17.
为了提高喷油器电磁阀的响应速率,提出了一种基于CPLD(复杂可编程逻辑器件)应用于高压共轨ECU的数字升压模块。鉴于该升压电路结构参数多,其升压电压的恢复响应要求高等特征,基于Pspice建立了升压电路的仿真模型,研究了不同电路参数下升压模块的输出特性,全面优化了该升压模块的性能。结果显示,该升压模块的最大转换效率可以达90%以上。在柴油发动机上对ECU的试验表明,升压电压最大波动不超过10%,其恢复时间仅为1.3ms,功率管最大温升仅为41℃,满足整机运行范围内ECU的需求。  相似文献   

18.
As part of a pilot study investigating the role of microorganisms in the immobilisation of As, Sb, B, Tl and Hg, the inorganic geochemistry of seven different active sinter deposits and their contact fluids were characterised. A comprehensive series of sequential extractions for a suite of trace elements was carried out on siliceous sinter and a mixed silica-carbonate sinter. The extractions showed whether metals were loosely exchangeable or bound to carbonate, oxide, organic or crystalline fractions. Hyperthermophilic microbial communities associated with sinters deposited from high temperature (92–94°C) fluids at a variety of geothermal sources were investigated using SEM. The rapidity and style of silicification of the hyperthermophiles can be correlated with the dissolved silica content of the fluid. Although high concentrations of Hg and Tl were found associated with the organic fraction of the sinters, there was no evidence to suggest that any of the heavy metals were associated preferentially with the hyperthermophiles at the high temperature (92–94°C) ends of the terrestrial thermal spring ecosystems studied.  相似文献   

19.
The physical aspects of the activation energy, in higher and high temperatures, of the metal creep process were examined. The research results of creep-rupture in a uniaxial stress state and the criterion of creep-rupture in biaxial stress states, at two temperatures, are then presented. For these studies creep-rupture, taking case iron as an example the energy and pseudoenergy activation was determined. For complex stress states the criterion of creep-rupture was taken to be Sdobyrev's, i.e. σred = σ1 β + (1 − β)σi, where: σ1-maximal principal stress, σi-stress intensity, β-material constant (at variable temperature β = β(T)). The methods of assessment of the material ageing grade are given in percentages of ageing of new material in the following mechanical properties: 1) creep strength in uniaxial stress state, 2) activation energy in uniaxial stress state, 3) criterion creep strength in complex stress states, 4) activation pseudoenergy in complex stress states. The methods 1) and 3) are the relatively simplest because they result from experimental investigations only at nominal temperature of the structure work, however, for methods 2) and 4) it is necessary to perform the experimental investigations at least at two temperatures.  相似文献   

20.
Hydrogen was produced from primary sewage biosolids via mesophilic anaerobic fermentation in a continuously fed bioreactor. Prior to fermentation the sewage biosolids were heated to 70 °C for 1 h to inactivate methanogens and during fermentation a cellulose degrading enzyme was added to improve substrate availability. Hydraulic retention times (HRT) of 18, 24, 36 and 48 h were evaluated for the duration of hydrogen production. Without sparging a hydraulic retention time of 24 h resulted in the longest period of hydrogen production (3 days), during which a hydrogen yield of 21.9 L H2 kg−1 VS added to the bioreactor was achieved. Methods of preventing the decline of hydrogen production during continuous fermentation were evaluated. Of the techniques evaluated using nitrogen gas to sparge the bioreactor contents proved to be more effective than flushing just the headspace of the bioreactor. Sparging at 0.06 L L min−1 successfully prevented a decline in hydrogen production and resulted in a yield of 27.0  L H2 kg−1 VS added, over a period of greater than 12 days or 12 HRT. The use of sparging also delayed the build up of acetic acid in the bioreactor, suggesting that it serves to inhibit homoacetogenesis and thus maintain hydrogen production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号