共查询到13条相似文献,搜索用时 65 毫秒
1.
以大孔树脂X-5为吸附试材,探究大孔树脂X-5静态和动态吸附茶皂素的吸附行为,确定X-5纯化茶皂素的动力学模型、吸附等温模型和纯化条件。结果表明:大孔树脂X-5对茶皂素的吸附过程符合一级动力学模型;Freundlich方程对吸附等温过程的拟合度较高。大孔树脂X-5纯化茶皂素的最佳条件(Φ30 mm×300 mm,柱体积60m L)为:上样浓度15.45 mg/mL、上样量60 mL、上样流速1 mL/min,依次用蒸馏水、40%乙醇、80%乙醇进行洗脱,每个梯度洗脱3个柱体积,洗脱流速为2 mL/min。在此条件下茶皂素的纯度由纯化前的27.68%上升至85.40%,回收率为77.13%。 相似文献
2.
3.
大孔树脂法纯化茶皂素研究 总被引:1,自引:0,他引:1
为了提高茶皂素的纯化效率以实现工业化生产,采用静态吸附试验与动态吸附试验相结合的方法筛选合适的大孔树脂,并在单因素试验的基础上,采用正交试验优化工艺参数.重点考察了上样速度、溶剂乙醇体积分数、上样液质量浓度对动态吸附率的影响以及洗脱剂乙醇体积分数、洗脱剂流速、洗脱剂体积对动态解吸率的影响.优化出D4020大孔树脂的动态吸附工艺参数为:上样速度0.9 mL/min,溶剂乙醇体积分数20%,上样液质量浓度27 mg/mL;动态解吸工艺参数为:洗脱剂乙醇体积分数60%,洗脱剂流速1.8 mL/min,洗脱剂体积2.0 BV. 相似文献
4.
目的对采用大孔吸附树脂法分离纯化茶叶籽饼粕中茶皂素的工艺进行优化,为进一步开发利用茶叶籽资源提供依据。方法以茶皂素吸附率与解吸率为指标,通过静态吸附与解吸实验筛选最优树脂。通过单因素实验、正交实验及验证性实验,优化最优树脂动态吸附与解吸茶皂素的工艺参数。结果D101树脂的静态吸附量与解吸率分别为142.974 mg/g和98.02%,为分离纯化料液中茶皂素的最优树脂;当主要考虑茶皂素得率时,其最优动态吸附与解吸工艺参数为上样质量浓度10 mg/m L、上样流速3 BV/h、上样体积6 BV、乙醇洗脱体积浓度80%、洗脱流速3 BV/h、洗脱剂体积5 BV,在该工艺参数条件下,茶皂素得率为74.25%,纯度为84.30%;当主要考虑茶皂素纯度时,最优动态吸附与解吸工艺参数为上样质量浓度10 mg/m L、上样流速4 BV/h、上样体积7 BV、乙醇洗脱体积浓度70%、洗脱流速3 BV/h、洗脱体积5 BV,在该工艺参数条件下,茶皂素纯度为97.7%,得率为72.04%。结论 D101大孔吸附树脂是一种可应用于茶叶籽饼粕中茶皂素分离纯化的较好树脂。 相似文献
5.
采用大孔树脂对茶皂素粗品进行分离纯化。以茶皂素得率为指标,采用响应面法优化洗脱条件。通过考察不同极性的大孔树脂D-101、AB-8、S-8、X-5、HPD-100的吸附与解吸性能,从中筛选出具有代表性的S-8大孔树脂,并对其吸附和解吸能力进行综合分析。确定S-8大孔树脂纯化茶皂素最佳工艺条件为:S-8大孔树脂装柱量100 g,质量浓度为0.703 mg/m L的茶皂素溶液110 m L,上样流速3.03 m L/min,洗脱剂乙醇体积分数90%,乙醇流速3.03 m L/min,乙醇用量100 m L。在最佳条件下,对含量为47.38%的茶皂素粗品进行分离纯化,最终茶皂素得率为81.74%,回收率为78.29%,含量为85.36%。 相似文献
6.
7.
8.
采用膜分离与大孔树脂联用技术纯化茶皂素。粗茶皂素经陶瓷膜和360Da纳滤膜初步分离浓缩,得率为62.1%,纯度为79%;根据静态和动态吸附筛选试验,选择大孔树脂AmberliteXAD7HP对茶皂素进一步纯化,通过单因素试验,确定最佳工艺参数为:上样流速0.5 mL/min、上样液浓度30mg/mL;以10%,40%,70%的乙醇溶液进行梯度洗脱,洗脱剂流速1mL/min,洗脱液体积为3BV,该条件下纯化,茶皂素最终得率为55.3%,纯度可达95%。该试验表明膜分离与大孔树脂联用技术可得到高纯度的茶皂素,是一种可工业化推广的方法。 相似文献
9.
研究了利用大孔吸附树脂纯化茶皂素的方法和纯化前后茶皂素性质的变化。通过8种不同极性的大孔树脂对茶皂素的吸附和解吸规律的研究,发现XR910X对茶皂素的纯化效果最好。动力学研究表明,XR910X对茶皂素的吸附符合Freundlich模型。XR910X对茶皂素纯化的最佳工艺条件为上样:样品pH 6.0,流速1.71BV/h,体积1BV;洗脱部分杂质:0.05g/100 mL NaOH溶液,流速1.71 BV/h,体积2BV;解吸:90%乙醇溶液,流速1.71BV/h,体积2BV。在上述优化的条件下,茶皂素的回收率为70.34%,产品纯度为94.26%。对比纯化前后茶皂素的相关性质,发现纯化后的茶皂素在表面活性、抗氧化活性及抑菌性能方面均比纯化前的有明显提高。 相似文献
10.
11.
脂肪氧合酶作为一种绿色食品催化剂广泛存在于植物和微生物中。采取大孔吸附树脂法从基因工程菌PET-32a-ana-LOX发酵产物中分离脂肪氧合酶,结果表明,HPD600树脂对脂肪氧合酶的选择性吸附能力较强,当上样量为4.3BV,上样浓度为4.026mg/mL,吸附流速为1.0BV/h时,其吸附率达到96.8%;洗脱剂采用混合剂(乙醇∶乙酸乙酯=1∶1),洗脱剂用量为33.3BV,洗脱流速为4.0BV/h时,其洗脱率为94.8%,得率为95.0%,纯化倍数为6.2。本研究结果为脂肪氧合酶的工业化生产提供了一定参考。 相似文献
12.
为优化大孔吸附树脂分离纯化苦荞总皂苷的工艺条件,通过静态吸附解吸实验筛选出适合分离纯化苦荞总皂苷的大孔吸附树脂SP700,其饱和吸附量为(25.241±0.590)mg皂苷/g树脂。研究了样液浓度、吸附时间对吸附容量的影响,乙醇体积分数对解吸得率的影响,并进行了动态实验,确定了SP700型大孔树脂分离纯化苦荞总皂苷的最佳工艺条件为:最佳上样浓度约0.586mg/m L,流速2BV/h,树脂比样液体积为1∶1,动态洗脱实验中,上样后用体积分数分别为50%和70%的乙醇溶液进行分段洗脱,洗脱流速为2BV/h,用量为2~3BV,洗脱得率最高可达到88.9%,洗脱液蒸干后所得固形物中皂苷含量较提取液固形物中皂苷含量提高了约2倍。 相似文献
13.
大孔树脂在茶叶功能成分分离中的应用进展 总被引:1,自引:0,他引:1
树脂吸附技术是20世纪70年代发展起来的用于植物功能成分分离纯化的一项新工艺,其不仅实现了连续分离,而且提高了产品的纯度和回收率,在两组分分离和多组分中单一组分的纯化中有巨大的优势。近年来,树脂吸附技术被广泛应用于茶叶功能成分的分离。本文综述了国内外应用大孔树脂分离茶叶功能成分的研究进展,并分析该方法在茶叶功能成分分离中的应用前景,也为其在茶叶功能成分分离中的进一步应用提供一定的科学借鉴依据。 相似文献