首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.
Transposition mutations are typically associated with the activities of transposable elements such as transposons and insertion sequences, whose mobility is dependent upon transposase enzymes that catalyze exchanges between element ends and target sites. We describe a single transposition event in which a block of donor sequence is inserted at a target site without the involvement of any known transposase or the ends of any known transposable element. We propose that this is a new type of spontaneous mutation which may be difficult to detect in standard mutant hunts but may be of evolutionary importance.  相似文献   

2.
mariner family transposons are widespread among eukaryotic organisms. These transposons are apparently horizontally transmitted among diverse eukaryotes and can also transpose in vitro in the absence of added cofactors. Here we show that transposons derived from the mariner element Himar1 can efficiently transpose in bacteria in vivo. We have developed simple transposition systems by using minitransposons, made up of short inverted repeats flanking antibiotic resistance markers. These elements can efficiently transpose after expression of transposase from an appropriate bacterial promoter. We found that transposition of mariner-based elements in Escherichia coli produces diverse insertion mutations in either a targeted plasmid or a chromosomal gene. With Himar1-derived transposons we were able to isolate phage-resistant mutants of both E. coli and Mycobacterium smegmatis. mariner-based transposons will provide valuable tools for mutagenesis and genetic manipulation of bacteria that currently lack well developed genetic systems.  相似文献   

3.
Mariner transposons belong to the mariner /Tc1 superfamily of class II, DNA-mediated elements. One of these transposons, Himar1 , isolated from the horn fly, is independent of host-specific factors that would limit transfer between different species, making it an ideal candidate for gene transfer technology development. To determine the activity of Himar1 transposase in mammalian cells, we introduced the Himar1 transposase gene into an adenovirus (Ad) vector under control of the phage T7 RNA polymerase promoter. Mammalian cells infected with the Ad vector carrying the Himar1 gene efficiently expressed the Himar1 transposase in the presence of T7 polymerase. In in vitro inter-plasmid transposition reactions, Himar1 transposase expressed by the Ad vector mediated precise cut-and-paste transposition and resulted in a characteristic duplication of TA at the integration site of the target plasmid. Further studies showed that this transposase was capable of catalyzing transposition between twoplasmids co-transfected into 293T7pol cells, which express T7 RNA polymerase. Combining the integration capability of mariner transposons with the transduction efficiency of Ad vectors is expected to provide a powerful tool for introducing transgenes into the host chromosome.  相似文献   

4.
The Tc1 element of Caenorhabditis elegans is a member of the most widespread class of DNA transposons known in nature. Here, we describe efficient and precise transposition of Tc1 in a cell-free system. Tc1 appears to jump by a cut-and-paste mechanism of transposition. The terminal 26 bp of the Tc1 terminal repeats together with the flanking TA sequence are sufficient for transposition. The target site choice in vitro is similar to that in vivo. Transposition is achieved with an extract prepared from nuclei of transgenic nematodes that overexpress Tc1 transposase but also by recombinant transposase purified from Escherichia coli. The simple reaction requirements explain why horizontal spread of Tc1/mariner transposons can occur. They also suggest that Tcl may be a good vector for transgenesis of diverse animal species.  相似文献   

5.
We characterized an insertion mutant of the baculovirus Cydia pomonella granulovirus (CpGV), which contained a transposable element of 3.2 kb. This transposon, termed TCp3.2, has unusually long inverted terminal repeats (ITRs) of 756 bp and encodes a defective gene for a putative transposase. Amino acid sequence comparison of the defective transposase gene revealed a distant relationship to a putative transposon in Caenorhabditis elegans which also shares some similarity of the ITRs. Maximum parsimony analysis of the predicted amino acid sequences of Tc1- and mariner-like transposases available from the GenBank data base grouped TCp3.2 within the superfamily of Tc1-like transposons. DNA hybridization indicated that TCp3.2 originated from the genome of Cydia pomonella, which is the natural host of CpGV, and is present in less than 10 copies in the C. pomonella genome. The transposon TCp3.2 most likely was inserted into the viral genome during infection of host larvae. TCp3.2 and the recently characterized Tc1-like transposon TC14.7 (Jehle et al. 1995), which was also found in a CpGV mutant, represent a new family of transposons found in baculovirus genomes. The occasional horizontal escape of different types of host transposons into baculovirus genomes evokes the question about the possible role of baculoviruses as an interspecies vector in the horizontal transmission of insect transposons.  相似文献   

6.
IS1071 is a class II transposable element carrying a tnpA gene related to the transposase genes of the Tn3 family. Copies of IS1071 that are conserved with more than 99% nucleotide sequence identity have been found as direct repeats flanking a remarkable variety of catabolic gene sequences worldwide. The sequences of chlorobenzoate catabolic transposons found on pBRC60 (Tn5271) in Niagara Falls, N.Y., and on pCPE3 in Bologna, Italy, show that these transposons were formed from highly homologous IS1071 and cbaABC components (levels of identity, > 99.5 and > 99.3%, respectively). Nevertheless, the junction sequences between the IS1071L and IS1071R elements and the internal DNA differ by 41 and 927 bp, respectively, suggesting that these transposons were assembled independently on the two plasmids. The formation of the right junction in both transposons truncated an open reading frame for a putative aryl-coenzyme A ligase with sequence similarity to benzoate- and p-hydroxybenzoate-coenzyme A ligases of Rhodopseudomonas palustris.  相似文献   

7.
Tn10 transposition requires IS10 transposase and essential sequences at the two ends of the element. Mutations in terminal basepairs 6-13 confer particularly strong transposition defects. We describe here the identification of transposase mutations that suppress the transposition defects of such terminus mutations. These mutations are named "SEM" for suppression of ends mutations. All of the SEM mutations suppress more than a single terminus mutation and thus are not simple alterations of transposase/end recognition specificity. The mutations identified fall into two classes on the basis of genetic tests, location within the protein and nature of the amino acid substitution. Class I mutations, which are somewhat allele specific, appear to define a small structural and functional domain of transposase in which hydrophobic interactions are important at an intermediate stage of the transposition reaction, after an effective interaction between the ends but before transposon excision. Class II mutations, which are more general in their effects, occur at a single residue in a small noncritical amino-terminal proteolytic domain of transposase and exert their affects by altering a charge interaction; these mutations may affect act early in the reaction, before or during establishment of an effective interaction between the ends.  相似文献   

8.
Mouse has become an increasingly important organism for modeling human diseases and for determining gene function in a mammalian context. Unfortunately, transposon-tagged mutagenesis, one of the most valuable tools for functional genomics, still is not available in this organism. On the other hand, it has long been speculated that members of the Tc1/mariner-like elements may be less dependent on host factors and, hence, can be introduced into heterologous organisms. However, this prediction has not been realized in mice. We report here the chromosomal transposition of the Sleeping Beauty (SB) element in mouse embryonic stem cells, providing evidence that it can be used as an in vivo mutagen in mice.  相似文献   

9.
Tn10, like several other transposons, exhibits a marked preference for integration into particular target sequences. Such sequences are referred to as integration hotspots and have been used to define a consensus target site in Tn10 transposition. We demonstrate that a Tn10 hotspot called HisG1, which was identified originally in vivo, also functions as an integration hotspot in vitro in a reaction where the HisG1 sequence is present on a short DNA oligomer. We use this in vitro system to define factors which are important for the capture of the HisG1 target site. We demonstrate that although divalent metal ions are not essential for HisG1 target capture, they greatly facilitate capture of a mutated HisG1 site. Analysis of catalytic transposase mutants further demonstrates that the DDE motif plays a critical role in 'divalent metal ion-dependent' target capture. Analysis of two other classes of transposase mutants, Exc+ Int- (which carry out transposon excision but not integration) and ATS (altered target specificity), demonstrates that while a particular ATS transposase binds HisG1 mutants better than wild-type transposase, Exc+ Int- mutants are defective in HisG1 capture, further defining the properties of these classes of mutants. Possible mechanisms for the above observations are considered.  相似文献   

10.
When supplied with high levels of the IS911-encoded transposase, IS911-based transposons can excise as circles in which the right and left terminal inverted repeats are abutted. Formation of the circle junction is shown here to create a promoter, p(junc), which is significantly stronger than the indigenous promoter, pIRL, and is also capable of driving expression of the IS911 transposition proteins. High transposase expression from the circular transposon may promote use of the circle as an integration substrate. The results demonstrate that IS911 circles are highly efficient substrates for insertion into a target molecule in vivo. Insertion leads to the disassembly of p(junc) and thus to a lower level of synthesis of the transposition proteins. The observation that normal levels of IS911 transposition proteins supplied by wild-type copies of IS911 are also capable of generating transposon circles, albeit at a low level, reinforces the idea that the transposon circles might form part of the natural transposition cycle of IS911. These observations form the elements of a feedback control mechanism and have been incorporated into a model describing one possible pathway of IS911 transposition.  相似文献   

11.
IS1373 is the putative insertion sequence delimiting the amplifiable unit AUD2 of Streptomyces lividans. Two IS1373-derived thiostrepton-resistant transposons, Tn5492 and Tn5494, transposed into multiple sites of the S. lividans chromosome at frequencies as high as 0.4 and 1%, respectively. Hence, IS1373 is a functional insertion sequence and its unique open reading frame, insA, encodes the transposase.  相似文献   

12.
An active Ac-like transposable element in teleost fish   总被引:1,自引:0,他引:1  
The i4/i4 genotype of the medakafish, Oryzias latipes, exhibits a quasi albino phenotype due to insertion of a novel transposable element, Tol2, into the tyrosinase gene. Tol2 is 4681 bp in length, has short inverted terminal repeats, and contains four ORFs with the potential to encode a transposase protein. Excision activity of the element has been detected by PCR analysis. Genomic Southern of the Tol2 element revealed that about 20 copies are present in the diploid genome. Dot-matrix comparisons of amino acid sequences of ORFs show relatively high similarity with transposases from Ac of maize, hobo of Drosophila, and Tam3 of snapdragon, which are all active transposable elements. Tol2 is thus concluded to be an active Ac-like transposable element probably encoding a transposase protein. It should therefore find application as a unique material for establishing a gene tagging system in fish.  相似文献   

13.
UV-inducible precise excision of transposons is a specific SOS-mutagenesis process. It deals with the deletion formation which has previously been demonstrated to involve direct or inverted IS-sequences of transposons. The process was used for revisiting the targeted and untargeted SOS-mutability and its relationship to the key genes for SOS-mutagenesis: the recA, lexA and umuDC. The precise excision of transposons Tn5 and Tn10 from the chromosomal insertion sites ade128 and cyc750 is induced in Escherichia coli K-12 and B cells, wild-type for DNA-repair, both by the low doses of UV-light ranging from 0.25 J m-2 to 2.5 J m-2 and the high doses within the range 5.0-40.0 J m-2. Precise excision of these transposons induced by the range of low doses incapable to induce targeted point mutations reveals its mostly untargeted nature. This process for the transposon Tn1 is not induced by UV-light within the range of doses 0.25-2.5 J m-2 while its induction is possible by UV-fluences ranging from 5.0 to 40.0 J m-2. A dose-response of the precise excision of Tn1 is similar to that of the UV-induced reversion of trpUAA point mutation that is targeted by nature and contrasts to the UV-inducible precise excision of Tn5 and Tn10. Both types of UV-inducible precise excision, demonstrated either by Tn1 or Tn5 and Tn10, are eliminated by mutations in the lexA, recA and umuDC genes indispensable for UV-induced SOS-mutability. The palindromic structures different for the transposons Tn1, Tn5 and Tn10 are discussed to be involved and affect the targeted and untargeted precise excision of transposons induced by UV-light.  相似文献   

14.
The author details the connection between disease outbreaks in salmonid fish and imports of salmonid eggs into Japan since the 1950s. The following diseases and species are involved: -infectious pancreatic necrosis in rainbow trout (Oncorhynchus mykiss) -infectious haematopoietic necrosis in sockeye ( of 'kokanee') salmon (O. nerka) and masu salmon (O. masu) -cold water disease, erythrocyte inclusion body syndrome, and bacterial kidney disease (caused by Renibacterium salmoninarum) in coho salmon (O. kisutch), ayu (Plecoglossus altivelis), rainbow trout and masu salmon. The author also discusses the strategies aimed at controlling the risk of disease spread through international trade in salmonid fish and fish products in Japan. Essential in these strategies are the following actions: -exchange of information on controlling disease problems -studies to establish standard methods to identify or detect fish pathogens -fish health certification.  相似文献   

15.
16.
We report several classes of human interspersed repeats that resemble fossils of DNA transposons, elements that move by excision and reintegration in the genome, whereas previously characterized mammalian repeats all appear to have accumulated by retrotransposition, which involves an RNA intermediate. The human genome contains at least 14 families and > 100,000 degenerate copies of short (180-1200 bp) elements that have 14- to 25-bp terminal inverted repeats and are flanked by either 8 bp or TA target site duplications. We describe two ancient 2.5-kb elements with coding capacity, Tigger1 and -2, that closely resemble pogo, a DNA transposon in Drosophila, and probably were responsible for the distribution of some of the short elements. The deduced pogo and Tigger proteins are related to products of five DNA transposons found in fungi and nematodes, and more distantly, to the Tc1 and mariner transposases. They also are very similar to the major mammalian centromere protein CENP-B, suggesting that this may have a transposase origin. We further identified relatively low-copy-number mariner elements in both human and sheep DNA. These belong to two subfamilies previously identified in insect genomes, suggesting lateral transfer between diverse species.  相似文献   

17.
Mu transposase is a member of a protein family that includes many transposases and the retroviral integrases. These recombinases catalyze the DNA cleavage and joining reactions essential for transpositional recombination. Here we demonstrate that, consistent with structural predictions, aspartate 336 of Mu transposase is required for catalysis of both DNA cleavage and DNA joining. This residue, although located 55 rather than 35 residues NH2-terminal of the essential glutamate, is undoubtedly the analog of the second aspartate of the Asp-Asp-35-Glu motif found in other family members. The core domain of Mu transposase consists of two subdomains: the NH2-terminal subdomain (IIA) contains the conserved Asp-Asp-Glu motif residues, whereas the smaller COOH-terminal subdomain (IIB) contains a large positively charged region exposed on its surface. To probe the function of domain IIB, we constructed mutant proteins carrying deletion or substitution mutations within this region. The activity of the deletion proteins revealed that domains IIA and IIB can be provided by different subunits in the transposase tetramer. Substitution mutations at two pairs of exposed lysine residues within the positively charged surface of domain IIB render transposase defective in transposition at a reaction step after DNA cleavage but prior to DNA joining. The severity of this defect depends on the structure of the DNA flanking the cleavage site. Thus, these data suggest that domain IIB is involved in manipulating the DNA near the cleavage site and that this function is important during the transition between the DNA cleavage and the DNA joining steps of recombination.  相似文献   

18.
This communication reports the development of an efficient in vitro transposition system for Tn5. A key component of this system was the use of hyperactive mutant transposase. The inactivity of wild type transposase is likely to be related to the low frequency of in vivo transposition. The in vitro experiments demonstrate the following: the only required macromolecules for most of the steps in Tn5 transposition are the transposase, the specific 19-bp Tn5 end sequences, and target DNA; transposase may not be able to self-dissociate from product DNAs; Tn5 transposes by a conservative "cut and paste" mechanism; and Tn5 release from the donor backbone involves precise cleavage of both 3' and 5' strands at the ends of the specific end sequences.  相似文献   

19.
The bacterial insertion sequence IS21 contains two genes, istA and istB, which are organized as an operon. IS21 spontaneously forms tandem repeats designated (IS21)2. Plasmids carrying (IS21)2 react efficiently with other replicons, producing cointegrates via a cut-and-paste mechanism. Here we show that transposition of a single IS21 element (simple insertion) and cointegrate formation involving (IS21)2 result from two distinct non-replicative pathways, which are essentially due to two differentiated IstA proteins, transposase and cointegrase. In Escherichia coli, transposase was characterized as the full-length, 46 kDa product of the istA gene, whereas the 45 kDa cointegrase was expressed, in-frame, from a natural internal translation start of istA. The istB gene, which could be experimentally disconnected from istA, provided a helper protein that strongly stimulated the transposase and cointegrase-driven reactions. Site-directed mutagenesis was used to express either cointegrase or transposase from the istA gene. Cointegrase promoted replicon fusion at high frequencies by acting on IS21 ends which were linked by 2, 3, or 4 bp junction sequences in (IS21)2. By contrast, cointegrase poorly catalyzed simple insertion of IS21 elements. Transposase had intermediate, uniform activity in both pathways. The ability of transposase to synapse two widely spaced IS21 ends may reside in the eight N-terminal amino acid residues which are absent from cointegrase. Given the 2 or 3 bp spacing in naturally occurring IS21 tandems and the specialization of cointegrase, the fulminant spread of IS21 via cointegration can now be understood.  相似文献   

20.
Tn10 is a composite transposon; inverted repeats of insertion sequence IS10 flank a tetracycline-resistance determinant. Previous work has identified several regulatory processes that modulate the interaction between Tn10 and its host. Among these, host-specified DNA adenine methylation, an IS10-encoded antisense RNA and preferential cis action of transposase are particularly important. We now find that the accessory host protein IHF and the sequences that encode the IHF-binding site in IS10 are also important regulators of the Tn10 transposition reaction in vivo and that these determinants are involved in two distinguishable regulatory processes. First, IHF and the IHF-binding site of IS10, together with other host components (e.g., HU), negatively regulate the normal intermolecular transposition process. Such negative regulation is prominent only for elements present on multicopy plasmid replicons. This multicopy plasmid-specific regulation involves effects both on the transposition reaction per se and on transposase gene expression. Second, specific interaction of IHF with its binding site stimulates transposon-promoted chromosome rearrangements but not transposition of a short Tn10-length chromosomal element. However, additional considerations predict that IHF action should favor chromosomal transposition for very long composite elements. On the basis of these and other observations we propose that, for chromosomal events, the major role of IHF is to promote the evolution of new IS10-based composite transposons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号