共查询到18条相似文献,搜索用时 62 毫秒
1.
沈良忠 《数字社区&智能家居》2009,5(5):3501-3504
关联规则是数据挖掘中发现知识的一种有效方法,其中Apriori算法又是关联规则挖掘的经典算法。本文在分析该Apriori算法的基础上.介绍了该算法的c#实现,包括频繁集的发现和关联规则的生成,并且通过对传统购物篮数据中的频繁集进行了验证,并且得到了其中满足最小支持度和可信度的强关联规则。 相似文献
2.
挖掘关联规则中的Apriori算法的研究 总被引:19,自引:1,他引:19
文章是基于大型销售数据库研究了关联规则挖掘问题,分析和探讨了Apriori算法,并给出了该算法的实现思想,同时通过例子说明算法的执行过程。 相似文献
3.
关联规则之Apriori算法的改进 总被引:3,自引:0,他引:3
关联规则是数据挖掘的重要研究内容。Apriori算法是关联规则之经典算法。本文在分析经典Apriori算法的基础上.提出了改进型的Apriori算法。新算法采用事务压缩技术,提高了数据挖掘的效率,具有一定的实用性。 相似文献
4.
关联规则Apriori算法 总被引:1,自引:0,他引:1
李金忠 《电脑编程技巧与维护》2008,(6):35-37
阐述了关联规则的基本概念、Apriori算法及其实验结果分析,并描述了Apriori算法的性能瓶颈与改进策略。 相似文献
5.
XU Lei 《数字社区&智能家居》2008,(23)
数据挖掘能为决策者提供许多重要的、极有价值的信息或知识,从而产生不可估量的效益。文章通过实例论述了Apriori算法进行数据挖掘应用的价值。 相似文献
6.
基于关联规则数据挖掘Apriori算法的研究与应用 总被引:2,自引:0,他引:2
目前在我国,对数据挖掘技术的研究与应用并不是很广泛.大多数数据库只能实现数据的录入、查询、统计等较低层次的功能,无法发现数据中存在的各种有用的信息.基于关联规则的数据挖掘主要用于发现数据集中项目之间的联系.以超市购物为例,目的在于找出顾客所购买商品之间的内在关联.利用Apriori算法的先验原理,减少Apriori算法在搜索频繁项目集时对候选式的搜索次数,并在对顾客购买的商品模型进行抽象的基础上,利用vc++与access数据库实现的算法系统,对所购买的商品之间的内在关联进行模拟分析.根据得到的数据分析出置信度较高的几种商品,通过对这些商品集中摆放,可以提高收益,从而证明改进的Apriori的实用性. 相似文献
7.
关联规则挖掘Apriori算法的改进与实现 总被引:11,自引:2,他引:11
Apriori算法是关联规则挖掘的一个经典算法,提高Apriori算法关联规则挖掘效率的关键是减少候选集的数量。通过分析、研究该算法的基本思想,文中提出利用Hash表存储技术对该算法进行改进,通过删除项Hash表来减少生成候选集的数量,从而提高算法的效率。实验结果表明,该改进算法能有效地提高关联规则挖掘的效率。 相似文献
8.
Apriori算法是关联规则挖掘的一个经典算法,提高Apriori算法关联规则挖掘效率的关键是减少候选集的数量.通过分析、研究该算法的基本思想,文中提出利用Hash表存储技术对该算法进行改进,通过删除项Hash表来减少生成候选集的数量,从而提高算法的效率.实验结果表明,该改进算法能有效地提高关联规则挖掘的效率. 相似文献
9.
基于关联规则挖掘领域的Apriori算法的优化研究 总被引:2,自引:0,他引:2
挖掘关联规则是数据挖掘领域的一个重要研究课题,在挖掘数据间的关联性时具有非常重要的意义。本文在分析关联规则挖掘及Apriori算法的基础上,从压缩扫描数据集及提高剪枝效率等方面对算法进行了优化改进,从而达到了降低消耗、提高算法效率的目的。最后,通过实例对优化的Apriori算法作了详细介绍。 相似文献
10.
该文通过对Apriori算法的基本思想和性能的研究剖析,认为Apriori算法存在一些不足;并且根据这些不足提出了相应的改进UDApriori算法对经典算法进行优化,从而得到一种改进的Apriori算法,与原算法相比运算效率大大提高. 相似文献
11.
针对Apriori算法存在的不足,提出了一种新的优化Apriori的方法。该方法通过优化频繁项集修剪策略,减少无效候选项集的产生;优化连接策略,减少连接次数,避免相同项目的多次重复比较;结合事务数据库逐步压缩技术,减少对无用事务的扫描次数。实验结果表明,经过优化的Apriori算法具有更好的运行效率。 相似文献
12.
Apriori算法是关联规则的经典算法,并己经被越来越多的企业使用。它在给企业带来经济效益的同时,也让人们意识到算法自身的不足:第一,该算法在扫描事务数据库的次数过多,从而需要承担很大的I/O负载;第二,它可能产生庞大的候选集。为了提高Apriori算法的效率,针对减少扫描事务数据库次数的方法,提出一种改进挖掘效率的算法。 相似文献
13.
14.
对挖掘关联规则中的Apriori算法的一种改进 总被引:1,自引:1,他引:0
对挖掘关联规则的Apriori算法关键思想以及性能进行了研究,给出该算法的一个改进算法,该改进算法提高了原算法的性能,并从实验中得出相关结果. 相似文献
15.
关联规则挖掘是数据挖掘中的一个重要研究内容.为了高效、快速地从事务数据库中挖掘出频繁项集,针对数据挖掘的经典关联规则Apriori算法的瓶颈问题提出了改进的方法.算法将事物数据库映射到布尔型数组中,然后所有的操作都针对数组元素值展开.这样大大减少了数据库的扫描次数.算法利用数组的随机访问特性及布尔型数据的简单"与"操作,直接产生频繁项集,而不产生大量的候选项集.经理论分析和实验结果显示该算法在效率上明显优于Apriori 算法. 相似文献
16.
在阐述了关联规则算法Apriori要义的基础上,解读了其在Weka系统中的具体实现。详细分析了weka源代码中实现Apriori算法的基础核心类包和算法实现类包中的关键类以及这些类内部的关键函数及变量,为探索通过weka源代码学习和研究数据挖掘算法及其实现方法提供了很好的帮助。 相似文献
17.
在所有的关联规则的挖掘算法中Apriori算法是最为经典的一个,但Apriofi算法有两个缺陷,即要扫描多次数据库以及生成大量的候选集。本文提出一种利用对项进行编码的方法对该算法进行改进,通过对项编码来减少扫描数据库次数并通过删除项来减少生成候选集的数量,从而提高算法的效率。相同条件下的实验结果表明,该优化后的算法能有效地提高关联规则挖掘的效率。 相似文献
18.
关联规则提取中对Apriori算法的一种改进 总被引:25,自引:0,他引:25
王创新 《计算机工程与应用》2004,40(34):183-185
关联规则的提取是数据挖掘中的重要研究课题,该文对关联规则提取中的Apriori算法进行了深入研究,指出了该算法的某些不足,提出了一种改进算法。实验结果表明,该算法性能明显优于Apriori算法,具有较高的推广价值。 相似文献