首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到9条相似文献,搜索用时 0 毫秒
1.
Using the thermal hydraulic code MERSAT detailed model including primary and secondary loop was developed for the IAEA's reference research reactor MTR 10 MW. The developed model enables the simulation of expected neutronic and thermal hydraulic phenomena during normal operation, reactivity and loss of flow accidents.Two different loss of flow accident (LOFA) have been simulated using slow and fast decrease time of core mass flow. In both cases the expected flow reversal from downward forced to upward natural circulation has been successfully simulated. The results indicate that in both accidents the limit of onset of subcooled boiling was not arrived and consequently no exceed of design limits in term of thermal hydraulic instability or DNB is observed. Finally, the simulation results show good agreement with previous international benchmark analyses accomplished with other qualified channel and thermal hydraulic system codes.  相似文献   

2.
Nuclear power plant Safety analysis using coupled 3D neutron kinetics/thermal-hydraulic codes technique is increasingly used nowadays. Actually, the use of this technique allows getting less conservatism and more realistic simulations of the physical phenomena. The challenge today is oriented toward the application of this technique to the operating conditions of nuclear research reactors. In the current study, a three-Dimensional Neutron Kinetics and best estimate Thermal-Hydraulic model based upon the coupled PARCS/RELAP5 codes has been developed and applied for a heavy water research reactor. The objective is to perform safety analysis related to design accidents of this reactor types. In the current study two positive reactivity insertion transients are considered, SCRAM protected and self-limiting power excursion cases. The results of the steady state calculations were compared with results obtained from conventional diffusion codes, while transient calculations were assessed using the point kinetic model of the RELAP5 code. Through this study, the applicability and the suitability of using the coupled code technique with respect to the classical models are emphasized and discussed.  相似文献   

3.
Investigations of fuel behavior are carried out in close connection with experimental research, operation feedback and computational analyses. OECD NEA sets up the “International Fuel Performance Experiments (IFPE) database”, a public domain database on nuclear fuel performance experiments with the purpose of model development and code validation. The objective of the activity (performed in the framework of the IAEA CRP FUMEX-III project) is to investigate the pellet-clad interaction mechanism and the capability of TRANSURANUS code in simulating the phenomena, processes occurring in the fuel rod during the power ramps, with focus on the parameters influencing the cladding failures. The experimental database adopted is the Studsvik PWR Super-Ramp subprogram, part of the IFPE database, which consists of 28 pressurized water reactor fuel rods power ramped at burnup from 28 to 45 MWd/kgU. Relevant results by TRANSURANUS are presented in connection with the experimental evidences. Focus is given on the PCI/SCC failure, demonstrating that the failure threshold, available in TRANSURANUS, results conservative both in case of KWU and W rods.  相似文献   

4.
The University of California, Berkeley (UCB) is performing thermal hydraulics safety analysis to develop the technical basis for design and licensing of fluoride-salt-cooled, high-temperature reactors (FHRs). FHR designs investigated by UCB use natural circulation for emergency, passive decay heat removal when normal decay heat removal systems fail. The FHR advanced natural circulation analysis (FANCY) code has been developed for assessment of passive decay heat removal capability and safety analysis of these innovative system designs. The FANCY code uses a one-dimensional, semi-implicit scheme to solve for pressure-linked mass, momentum and energy conservation equations. Graph theory is used to automatically generate a staggered mesh for complicated pipe network systems. Heat structure models have been implemented for three types of boundary conditions (Dirichlet, Neumann and Robin boundary conditions). Heat structures can be composed of several layers of different materials, and are used for simulation of heat structure temperature distribution and heat transfer rate. Control models are used to simulate sequences of events or trips of safety systems. A proportional-integral controller is also used to automatically make thermal hydraulic systems reach desired steady state conditions. A point kinetics model is used to model reactor kinetics behavior with temperature reactivity feedback. The underlying large sparse linear systems in these models are efficiently solved by using direct and iterative solvers provided by the SuperLU code on high performance machines. Input interfaces are designed to increase the flexibility of simulation for complicated thermal hydraulic systems. This paper mainly focuses on the methodology used to develop the FANCY code, and safety analysis of the Mark 1 pebble-bed FHR under development at UCB is performed.  相似文献   

5.
This paper presents an overview of instrumentation and control (I&C) systems of a pressurized water reactor (PWR) type nuclear power plant (NPP) in Korea. Yonggwang unit 3, which was constructed as a basis model for a Korea standard nuclear power plant (KSNP), is selected as an example for the presentation. This overview is derived from analyzing the I&C systems based on a top-down approach. The I&C systems consist of 30 systems. The 183 I&C cabinets are also analyzed and mapped to the systems. The overview is focused on an interface between the systems and the cabinets. This information will be used to understand the implementation of the I&C systems and to group the systems for an upgrade.  相似文献   

6.
Passive systems are increasingly deployed in nuclear industry with an objective of increasing reliability and safety of operations with reduced cost. Methods for assessing the reliability of thermal-hydraulic passive systems, that is systems with moving working fluid, address the issues in natural buoyancy-driven flow that could result in a failure to meet the design safety limits under accident scenarios. This is referred as design functional reliability. This paper presents the results of functional reliability analysis carried out for the passive Safety Grade Decay Heat Removal System (SGDHRS) of Indian Prototype Fast Breeder Reactor (PFBR). The analysis is carried out based on the overall approach reported in the Reliability Methods for Passive System (RMPS, European Commission) project. Functional failure probability is calculated using Monte-Carlo method and also with method of moments.  相似文献   

7.
8.
Advanced nuclear water reactors rely on containment behaviour in realization of some of their passive safety functions. Steam condensation on containment walls, where non-condensable gas effects are significant, is an important feature of the new passive containment concepts, like the AP600/1000 ones.In this work the international reactor innovative and secure (IRIS) was taken as reference, and the relevant condensation phenomena involved within its containment were investigated with different computational tools. In particular, IRIS containment response to a small break LOCA (SBLOCA) was calculated with GOTHIC and RELAP5 codes. A simplified model of IRIS containment drywell was implemented with RELAP5 according to a sliced approach, based on the two-pipe-with-junction concept, while it was addressed with GOTHIC using several modelling options, regarding both heat transfer correlations and volume and thermal structure nodalization. The influence on containment behaviour prediction was investigated in terms of drywell temperature and pressure response, heat transfer coefficient (HTC) and steam volume fraction distribution, and internal recirculating mass flow rate. The objective of the paper is to preliminarily compare the capability of the two codes in modelling of the same postulated accident, thus to check the results obtained with RELAP5, when applied in a situation not covered by its validation matrix (comprising SBLOCA and to some extent LBLOCA transients, but not explicitly the modelling of large dry containment volumes).The option to include or not droplets in fluid mass flow discharged to the containment was the most influencing parameter for GOTHIC simulations. Despite some drawbacks, due, e.g. to a marked overestimation of internal natural recirculation, RELAP5 confirmed its capability to satisfactorily model the basic processes in IRIS containment following SBLOCA.  相似文献   

9.
In the paper the main goals and progress of the surveillance specimen programme for the RPVs WWER-440/213 in Jaslovské Bohunice V-2 and Mochovce NPPs are presented. At Jaslovské Bohunice V-2, the standard surveillance specimen programme (SSSP) was finished and so-called ‘Extended Surveillance Specimen Programme’ (ESSP) was prepared on the base of its critical analysis. For first two units of the Mochovce NPP completely new programmes of irradiation embrittlement monitoring called ‘Modern Surveillance Specimen Programme’ is prepared. It is based on the experience with SSSP and ESSP as well as the recommendations of IAEA experts. This programme will serve for Mochovce NPP during all planned service life. The experience of ESSP application on the 3rd and 4th units in Jaslovské Bohunice V-2 NPP are presented in the paper too.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号