首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Molecular dynamics simulations revealed that back-and-forth motion of DNA strands through a 1 nm diameter pore exhibits sequence-specific hysteresis that arises from the reorientation of the DNA bases in the nanopore constriction. Such hysteresis of the DNA motion results in detectable changes of the electrostatic potential at the electrodes of the nanopore capacitor and in a sequence-specific drift of the DNA strand under an oscillating transmembrane bias. A strategy is suggested for sequencing DNA in a nanopore using the electric field that alternates periodically in time.  相似文献   

2.
We describe the incorporation of multiple fluorophores into a single stranded DNA (ssDNA) chain using terminal deoxynucleotidyl transferase (TdT), a template-independent DNA polymerase that catalyzes the sequential addition of deoxynucleotides (dNTPs) at the 3'-OH group of an oligonucleotide primer; we term this methodology surface initiated enzymatic polymerization (SIEP) of DNA. We found that long (>1 Kb) ssDNA homopolymer can be grown by SIEP, and that the length of the ssDNA product is determined by the monomer to oligonucleotide initiator ratio. We observed efficient initiation (≥50%) and narrow polydispersity of the extended product when fluorescently labeled nucleotides are incorporated. TdT's ability to incorporate fluorescent dNTPs into a ssDNA chain was characterized by examining the effect of the molar ratios of fluorescent dNTP to natural dNTP on the degree of fluorophore incorporation and the length of the polymerized DNA strand. These experiments allowed us to optimize the polymerization conditions to incorporate up to ~50 fluorescent Cy3-labeled dNTPs per kilobase into a ssDNA chain. With the goal of using TdT as an on-chip labeling method, we also quantified TdT mediated signal amplification on the surface by immobilizing ssDNA oligonucleotide initiators on a glass surface followed by SIEP of DNA. The incorporation of multiple fluorophores into the extended DNA chain by SIEP translated to a ~45 fold signal amplification compared to the incorporation of a single fluorophore. SIEP was then employed to detect hybridization of DNA, by the posthybridization, on-chip polymerization of fluorescently labeled ssDNA that was grown from the 3'-OH of target strands that hybridized to DNA probes that were printed on a surface. A dose-response curve for detection of DNA hybridization by SIEP was generated, with a ~1 pM limit of detection and a linear dynamic range of 2 logs.  相似文献   

3.
S. A. Meguid  F. Al Jahwari 《Acta Mechanica》2014,225(4-5):1267-1275
Molecular dynamics (MD) simulations of pullout tests are developed to determine the effect of the different parameters influencing the interfacial shear strength (ISS) of carbon nanotube-reinforced metallic matrices. Unlike earlier works, the current study focuses on the effect of the cell size, cell geometry, and the potential functions adopted in the MD simulations. The basic MD cell was created in two steps. The metal atoms were initially created using the built-in tools in the molecular dynamics code “LAMMPS” guided by the specific metal lattice parameters with a pre-defined constraint of a central hole to accommodate the CNT at a later stage. The cell was equilibrated with Brownian dynamics prior to the placement of the CNT reinforcement. The CNT was then placed in the central hole. This was then followed by equilibrating the entire system prior to pulling out the CNT, to release spurious stresses arising during the build up of the cell, initially with Brownian dynamics and later with the nvt ensemble. Our ISS predictions agreed very well with earlier research work. Additionally, our results show that box-shaped MD cells are more suitable for the pullout test simulations with nvt or nve ensembles, while npt scheme produces additional forces to the system. The MD cell length was found to have insignificant effect on the pullout force.  相似文献   

4.
Fully atomistic molecular dynamic simulations were carried out by using the Insight (Insight II 4.0.0 P version) and the Discover-3 programs from MSI with the polymer consortium force field. The model system used in these simulations was built using the Amorphous Cell module. The polymer system simulated was glassy polyisoprene (PI) as used in previous neutron scattering (NS) measurements. A first molecular dynamics at 363 K was run for 1 ns using the Discover-3 program collecting data every 0.01 ps and a subsequent one (taking the previous output sample as an input for the following dynamics) was run for 2 ns collecting data every 0.5 ps. The results of the second run agreed to those of the first run, indicating that the sample was well equilibrated at this high temperature. Starting from the obtained atomic trajectories we have calculated the partial static structure factors for NS corresponding to different PI samples with different levels of deuteration (PId3, i.e., methyl group deuterated and main chain protonated; PId5, i.e., methyl group protonated and main chain deuterated; PId8, i.e., fully deuterated and PIh8, i.e., fully protonated). The results obtained are compared to the coherent NS cross-sections measured on real samples by means of D7 spectrometer with polarization analysis (ILL, Grenoble). A good agreement is obtained between experimental and simulated data validating the simulated sample. Moreover, the dynamic evolution of these correlations has also been calculated from the simulations. With these time dependent functions, the magnitude measured in a neutron spin echo (NSE) experiment can be constructed. Here we present two examples dealing with the fully deuterated sample PId8 and a partially deuterated sample, PId5, that show how computer simulation constitutes an invaluable tool for interpreting NSE results.  相似文献   

5.
Molecular dynamics (MD) simulations have been used to study calcium phosphate formation regulated by collagen in solution. In this study, a collagen-like peptide molecule has been mixed with different types of ions for simulations of the early stage of biomineralization. We have compared one system containing calcium ions, and hydrogen phosphate ions to the other system containing calcium ions, phosphate ions and hydroxy ions in a water box containing a peptide molecule (1CAG) in the center. After the simulations, the radical distance function and coordination number profiles show that calcium ions and phosphate ions attract each other and form stable clusters in both systems studied. The hydroxy ions are attracted by calcium ions and the distance between them is close to that in hydroxyapatite, which is considered to play important roles in the formation of hydroxyapatite. The current results provide a useful approach to study the scenario of mineralizing collagen using MD methods.  相似文献   

6.
He F  Feng F  Duan X  Wang S  Li Y  Zhu D 《Analytical chemistry》2008,80(6):2239-2243
A new methodology has been developed for DNA detection that interfaces optical amplification properties of cationic conjugated polyelectrolytes with highly selective target-induced DNA strand displacement. The probe solution contains a cationic conjugated polyelectrolyte (CCP-1), partly hybridized duplex DNA labeled with a fluorescein at the 5'-terminus, and endonuclease Hae III. Excitation of the CCP-1 leads to efficient energy transfer from CCP-1 to fluorescein. In the presence of a complementary DNA strand to one strand of the probe duplex, a hairpin DNA with the recognition site of endonuclease Hae at the double-stranded stem is released following its cleavage by Hae III to generate short DNA fragment carrying fluorescein. The relatively weak electrostatic interactions between the DNA fragment and CCP-1 lead fluorescein far away from CCP-1 and inefficient energy transfer between them is present. Thus, the DNA can be detected by fluorescence spectra in view of the observed CCP-1 or fluorescein emission changes in aqueous solutions. To avoid utilizing unstable Hae III endonuclease, a new system based on RNA-cleaving DNAzyme was further developed. The protocol offers a convenient approach for homogeneous, selective, and sensitive DNA assay in aqueous solution without using any denaturation steps. Compared with previously reported DNA sensors based on conjugated polyelectrolytes, our new method is highly sequence specific and a single-nucleotide mismatch can be clearly detected in target DNA.  相似文献   

7.
The E. coli catabolite gene activator protein (CAP)-DNA complex with 125I located at the position of the H5 atom of the cytosine near the centre was incorporated into the PARTRAC track structure code. DNA strand breaks due to irradiation were calculated by track structure and radical attack simulations; strand breaks due to neutralisation of the highly charged 125Te ion were derived from a semi-empirical distribution. According to the calculations, the neutralisation effect dominates the strand breakage frequency at 2 bases away from the 125I decay site on both strands. The first breakage distribution counted from a 32P labelled end on the strand with 125I agreed well with experimental data, but on the opposite strand, the calculated distribution is more concentrated around the decay site and its yield is about 20% larger than the measured data.  相似文献   

8.
Indium tin oxide electrodes were modified with DNA, and the guanines in the immobilized nucleic acid were used as a substrate for electrocatalytic oxidation by Ru(bpy)3(3+) (bpy = 2,2'-bipyridine). Nucleic acids were deposited onto 12.6-mm2 electrodes from 9:1 DMF/water mixtures buffered with sodium acetate. The DNA appeared to denature in the presence of DMF, leading to adsorption of single-stranded DNA. The nucleic acid was not removed by vigorous washing or heating the electrodes in water, although incubation in phosphate buffer overnight liberated the adsorbed biomolecule. Acquisition of cyclic voltammograms or chronoamperomograms of Ru(bpy)3(2+) at the modified electrodes produced catalytic signals indicative of oxidation of the immobilized guanine by Ru(III). The electrocatalytic current was a linear function of the extent of modification with a slope of 0.5 microA/pmol of adsorbed guanine; integration of the current-time traces gave 2.2+/-0.4 electrons/guanine molecule. Use of long DNA strands therefore gave steep responses in terms of the quantity of adsorbed DNA strand. For example, electrodes modified with a 1497-bp PCR product from the HER-2 gene produced detectable catalytic currents when as little as 550 amol of strand was adsorbed, giving a sensitivity of 44 amol/mm2.  相似文献   

9.
Molecular dynamics method although provides details of energies of the system as a function of time, is not suited to simulate the processes involving activation processes. Therefore, we attempted to combine the molecular dynamics and Monte Carlo methods. Using molecular dynamics, the energies of the system were calculated which were subsequently combined with Monte Carlo method using random numbers, epitaxial growth of (111) plane of copper, silver, and gold. While surface adsorption and surface diffusion for copper, silver, and gold were simulated by use of molecular dynamics method, the relation between the growth rate of thin films and the packing density of atoms were obtained using Monte Carlo simulation. Thus, by combining the results of the molecular dynamics method and the Monte Carlo method the growth process of thin films at elevated temperatures were obtained, which is too tedious to be calculated by molecular dynamics alone.  相似文献   

10.
The dynamics of gas evolution in the course of thermal oxidation of 30% solutions of tri-n-butyl phosphate (TBP) in C13 diluent, equilibrated with 12.9 M HNO3, was studied in open vessels in the temperature interval from 70 to 150°С. The total volumes of the released gases were measured, and the effect of the preliminary γ-irradiation of the TBP–С13–HNO3 system on the thermolysis of nitric acid and accumulation of liquid products of TBP decomposition was studied. The boundary temperature parameters for the development of the oxidation process in the autocatalytic mode were estimated. On heating of the single-phase systems in open vessels, the conditions for the development of the autocatalytic oxidation are not created.  相似文献   

11.
Atomic force microscopy (AFM) is a powerful tool for analysing the shapes of individual molecules and the forces acting on them. AFM-based force spectroscopy provides insights into the structural and energetic dynamics of biomolecules by probing the interactions within individual molecules, or between a surface-bound molecule and a cantilever that carries a complementary binding partner. Here, we show that an AFM cantilever with an antibody tether can measure the distances between 5-methylcytidine bases in individual DNA strands with a resolution of 4 ?, thereby revealing the DNA methylation pattern, which has an important role in the epigenetic control of gene expression. The antibody is able to bind two 5-methylcytidine bases of a surface-immobilized DNA strand, and retracting the cantilever results in a unique rupture signature reflecting the spacing between two tagged bases. This nanomechanical approach might also allow related chemical patterns to be retrieved from biopolymers at the single-molecule level.  相似文献   

12.
Sun HB  Qian L  Yokota H 《Analytical chemistry》2001,73(10):2229-2232
We have developed an atomic force microscopy-based method for detecting abasic sites (AP sites) on individual DNA molecules. By using uracil and uracil DNA glycosylase, we first prepared a 250-bp DNA template consisting of two AP sites at specific locations. We then detected the AP sites by marking them with biotinylated aldehyde-reactive probes and monomeric avidin. We demonstrate here that (i) the location of monomeric avidin bound on a single DNA molecule was detectable by atomic force microscopy; (ii) the observed location of avidin was in good agreement to the predicted AP sites at a few nanometer resolution; and (iii) by end-labeling the 5'-terminus of one DNA strand, the AP sites were determined without directional ambiguity. The technique described here will provide a sensitive way of locating AP sites and contribute to screen DNA damages from individual molecules.  相似文献   

13.
Differential and integral electron impact ionisation cross sections were calculated using the binary-encounter-Bethe theoretical model for each core particle molecules: the four DNA bases, the backbone (sugar phosphate), and the 19 amino acids constituent of histone proteins. The binding energies and populations of molecular orbitals were computed using General Atomic Molecular Electronic Structure System. At present, there are neither experimental nor other theoretical results on amino acid electron impact ionisation cross sections. Regarding DNA bases and backbone, our results show good agreement with those published in journals.  相似文献   

14.
Investigation of radiation damage in DNA by using atomic force microscopy   总被引:5,自引:0,他引:5  
The effect of radiations on supercoiled plasmid DNA has been investigated by using atomic force microscopy (AFM). The DNA molecules were deposited on a substrate and observed by AFM. Alternatively, DNA at different scavenger concentrations was initially exposed to different types of radiations (alpha and X rays) at various doses. After irradiation, fragments (open circular and linearised strands) were observed corresponding to single strand breaks and double strand breaks in DNA. This result indicates the capabilities of AFM for the qualitative detection of strand modifications due to irradiation. The amount of each class of topology enables a quantitative response to be determined for both types of radiation (alpha, X). A value of the radiosensitivity of DNA was obtained as a function of the scavenger concentration. Strong accordance was found between AFM results and those obtained by use of gel electrophoresis. The advantage of AFM in comparison with traditional techniques is the possibility of analysing the radiation effects on one molecule. Indeed, taking the example of alpha particles, it is shown that it is easy to measure the sizes of linear strands by AFM. Such additional or even precise results are difficult to obtain with gel electrophoresis since, in such a case, data are lost through smearing.  相似文献   

15.
Nanopore translocation dynamics of a single DNA-bound protein   总被引:1,自引:0,他引:1  
We study the translocation dynamics of a single protein molecule attached to a double-stranded DNA that is threaded through a solid-state nanopore by optical tweezers and an electric field (nanopore force spectroscopy). We find distinct asymmetric and retarded force signals that depend on the protein charge, the DNA elasticity and its counterionic screening in the buffer. A theoretical model where an isolated charge on an elastic, polyelectrolyte strand is experiencing an anharmonic nanopore potential was developed. Its results compare very well with the measured force curves and explain the experimental findings that the force depends linearly on the applied electric field and exhibits a small hysteresis during back and forth translocation cycles. Moreover, the translocation dynamics reflects the stochastic nature of the thermally activated hopping between two adjacent states in the nanopore that can be adequately described by Kramers rate theory.  相似文献   

16.
A general approach to detecting nucleic acid sequences in homogeneous media by means of steady-state fluorescence measurements is proposed. The methodology combines the use of a fluorescence-labeled single-strand DNA model probe, the complementary single-strand DNA target, and a DNA intercalator. The probe was fluorescein labeled to a spacer arm at the N4 position of the cytosine amino groups in polyribocytidylic acid (5'), poly(C), which acts as a model DNA probe. The complementary strand was polyriboinosinic acid (5'), poly(I), as a model of the target, and the energy transfer acceptor was an intercalator, either ethidium bromide or ethidium homodimer. In previous papers we have shown that the fluorescence intensity of the fluorescein label decreases when labeled poly(C) hybridizes with poly(I), and this fluorescence quenching can be used to detect DNA hybridization or renaturation in homogeneous media. In this paper we demonstrate that fluorescence resonance energy transfer (FRET) between fluorescein labeled to poly(C) and an intercalator agent takes place when single-stranded poly(C) hybridizes with poly(I), and we show how the fluorescence energy transfer further decreases the steady-state fluorescence intensity of the label, thus increasing the detection limit of the method. The main aim of this work was to develop a truly homogeneous detection system for specific nucleic acid hybridization in solution using steady-state fluorescence and FRET, but with the advantage of only having to label the probe with the energy donor since the energy acceptor is intercalated spontaneously. Moreover, the site label is not critical and can be labeled randomly in the DNA strand. Thus, the method is simpler than those published previously based on FRET. The experiments were carried out in both direct and competitive formats.  相似文献   

17.
The ureter primary explant technique was developed to study bystander effects under in vivo like conditions where stem and differentiated cells are present. Irradiation was performed with a 3He2+ charged particle microbeam available at the Gray Cancer Institute, with high (approximately 2 microns) precision. Tissue sections from porcine ureters were pre-irradiated with the microbeam at a single location with 10 3He2+ particles (5 MeV; LET 70 keV.micron-1). After irradiation, the tissue section was incubated for 7 days, thus allowing the explant outgrowth to form. Total cellular damage (total fraction of micronucleated and apoptotic cells) was measured according to morphological criteria. Apoptosis was also assessed using a 3'-OH DNA end-labelling technique. Premature differentiation was estimated using antibodies to uroplakin III, a specific marker of terminal urothelial differentiation. Results of our experiments demonstrated a significant bystander-induced differentiation and a less significant increase in apoptotic and micronucleated cells. A hypothesis based on the protective nature of the bystander effect is proposed.  相似文献   

18.
Here, we present the formation of a fully addressable DNA nanostructure that shows the potential to be exploited as, for example, an information storage device based on pH-driven triplex strand formation or nanoscale circuits based on electron transfer. The nanostructure is composed of two adjacent hexagonal unit cells (analogous to naphthalene) in which each of the eleven edges has a unique double-stranded DNA sequence, constructed using novel three-way oligonucleotides. This allows each ten base-pair side, just 3.4 nm in length, to be assigned a specific address according to its sequence. Such constructs are therefore an ideal precursor to a nonrepetitive two-dimensional grid on which the "addresses" are located at a precise and known position. Triplex recognition of these addresses could function as a simple yet efficient means of information storage and retrieval. Future applications that may be envisaged include nanoscale circuits as well as subnanometer precision in nanoparticle templating. Characterization of these precursor nanostructures and their reversible targeting by triplex strand formation is shown here using gel electrophoresis, atomic force microscopy, and fluorescence resonance energy transfer (FRET) measurements. The durability of the system to repeated cycling of pH switching is also confirmed by the FRET studies.  相似文献   

19.
Molecular modelling played a central role in the discovery of the structure of DNA by Watson and Crick. Today, such modelling is done on computers: the more powerful these computers are, the more detailed and extensive can be the study of the dynamics of such biological macromolecules. To fully harness the power of modern massively parallel computers, however, we need to develop and deploy algorithms which can exploit the structure of such hardware. The Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) is a scalable molecular dynamics code including long-range Coulomb interactions, which has been specifically designed to function efficiently on parallel platforms. Here we describe the implementation of the AMBER98 force field in LAMMPS and its validation for molecular dynamics investigations of DNA structure and flexibility against the benchmark of results obtained with the long-established code AMBER6 (Assisted Model Building with Energy Refinement, version 6). Extended molecular dynamics simulations on the hydrated DNA dodecamer d(CTTTTGCAAAAG)(2), which has previously been the subject of extensive dynamical analysis using AMBER6, show that it is possible to obtain excellent agreement in terms of static, dynamic and thermodynamic parameters between AMBER6 and LAMMPS. In comparison with AMBER6, LAMMPS shows greatly improved scalability in massively parallel environments, opening up the possibility of efficient simulations of order-of-magnitude larger systems and/or for order-of-magnitude greater simulation times.  相似文献   

20.
Lin L  Liu Y  Zhao X  Li J 《Analytical chemistry》2011,83(22):8396-8402
Phosphorylation of DNA with 5'-hydroxyl termini plays a critical role in a majority of normal cellular events, including DNA recombination, DNA replication, and repair of DNA during strand interruption. Determination of nucleotide kinase activity and inhibition is under intense development due to its importance in regulating nucleic acid metabolism. Here, by using T4 polynucleotide kinase (PNK) as a model, which plays an essential role in cellular nucleic acid metabolism, particularly in the cellular responses to DNA damage, we describe a strategy for simply and accurately determining nucleotide kinase activity and inhibition by means of a coupled λ exonuclease cleavage reaction and graphene oxide (GO) based platform. The dye attached dsDNA preserves most of the fluorescence when mixed with GO. While dsDNA is phosphorylated by PNK and then immediately cleaved by λ exonuclease, fluorescence is greatly quenched. Because of the super quenching ability and the high specific surface area of GO, the as-proposed platform presents an excellent performance with wide linear range and low detection limit in the cell extracts environment. Additionally, inhibition effects of adenosine diphosphate, ammonium sulfate, and sodium hydrogen phosphate have also been investigated. The method not only provides a universal platform for monitoring activity and inhibition of nucleotide kinase but also shows great potential in biological process researches, drug discovery, and clinic diagnostics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号