首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
The CuO/γ-Al2O3/cordierite catalyst, after being sulfated by sulfur dioxide (SO2) at 673 K, exhibits high activities for selective catalytic reduction (SCR) of nitrogen oxide (NO) with ammonia (NH3) at 573-723 K. The intrinsic kinetics of SCR of NO with NH3 over CuO/γ-Al2O3/cordierite catalyst has been measured in a fixed-bed reactor in the absence of internal and external diffusions. The experimental results show that the reaction rate can be quantified by a first-order expression with activation energy of 94.01 kJ•mol1 and the corresponding pre-exponential factor of 3.39×108 cm3•g1•s1 when NH3 is excessive. However, when NH3 is not enough, an Eley-Rideal kinetic model based on experimental data is derived with Ea of 105.79 kJ•mol1, the corresponding A of 2.94×109 cm3•g1•s1, heat of adsorption ΔHads of 87.90 kJ•mol1 and the corresponding Aads of 9.24 cm3•mol1. The intrinsic kinetic model obtained was incorporated in a 3D mathematical model of monolithic reactor, and the agreement of the prediction with experimental data indicates that the present kinetic model is adequate for the reactor design and engineering scale-up.  相似文献   

2.
Considering limited success in target-hitting discharge from alcohol industry, our attention was directed toward a recycling use of distillery spentwash (DS) in cassava bioethanol production by using a two-stage up-flow anaerobic sludge blanket bioremediation (TS-UASBB). With the TS-UASBB, , COD, N and P in the effluent from the DS degraded significantly and their concentrations were kept at 0.2 g•L1, 2.0 g•L1, 1.0 g•L1 and 15 mg•L1, respectively, in 13 batch processes for water-recycled ethanol fermentation. With the effluent used directly as dilution water, no heat-resistant bacteria were found alive. The thirteen-batch ethanol production individually achieved 10% after 48 h fermentation. The starch utilization ratio and total sugar consumption were 90% and 99.5%, respectively. The novel water-recycled bioethanol production process with ethanol fermentation and TS-UASBB has a considerable potential in other starchy and cellulosic ethanol production.  相似文献   

3.
Amine-functionalized mesoporous silica was prepared by using lauric acid and N-stearoyl-l-glutamic acid as structure directing agents via the SN+-I mechanism and applied to CO2 adsorption at room temperature. With γ-aminopropyltriethoxysilane as co-structure directing agent and due to the direct electrostatic interaction with anionic surfactant, most of the amino groups were uniformly distributed at the inner surface of pores and the performance was stable. The amine-functionalized mesoporous silica was characterized by Fourier transform infrared spectrometer, X-ray diffraction, nitrogen physisorption and thermogravimetric analysis. The CO2 adsorption capacity was measured by digital recording balance. At the room temperature and under the atmospheric pres-sure, the adsorption capacity of LAA-AMS-0.2 for CO2 and N2 is 1.40 mmol•g1 and 0.03 mmol•g1, respectively, indicating high separation coefficient of CO2/N2.  相似文献   

4.
The separation of Eu3+ is studied with a dispersion combined liquid membrane (DCLM), in which polyvinylidene fluoride membrane (PVDF) is used as the liquid membrane support, dispersion solution containing HCl solution as the stripping solution, and 2-ethyl hexyl phosphonic acid-mono-2-ethyl hexyl ester (P507) dissolved in kerosene as the membrane solution. The effects of pH value, initial concentration of Eu3+ and different ionic strength in the feed phase, volume ratio of membrane solution to stripping solution, concentration of HCl solution, concentration of carrier, different stripping agents in the dispersion phase on the separation are investigated. The optimum condition for separation of Eu3+ is that concentration of HCl solution is 4.0 mol•L1, concentration of carrier is 0.16 mol•L1, and volume ratio of membrane solution to stripping solution is 30︰30 in the dispersion phase, and pH value is 4.2 in the feed phase. The ionic strength has no significant effect on separation of Eu3+. Under the optimum condition, when the initial concentration of Eu3+ is 0.8×104 mol•L1, the separation percentage of Eu3+ is 95.3% during the separation time of 130 min. The kinetic equation is developed in terms of the law of mass diffusion and the theory of interface chemistry. The diffusion coefficient of Eu3+ in the membrane and the thickness of diffusion layer between feed phase and membrane phase are obtained and their values are 1.48×107 m2•s1 and 36.6 μm, respectively. The results obtained are in good agreement with literature data.  相似文献   

5.
This paper reports on ¬¬¬a new microporous composite silica membrane prepared via acid-catalyzed polymeric route of sol-gel method with tetraethylorthosilicate (TEOS) and a bridged silsesquioxane [1, 2-bis(triethoxysilyl)ethane, BTESE] as precursors. A stable nano-sized composite silica sol with a mean volume size of ~5 nm was synthesized. A 150 nm-thick defect-free composite silica membrane was deposited on disk support consisting of macroporous α-Al2O3 and mesoporous γ-Al2O3 intermediate layer by using dip-coating ap-proach, followed by calcination under pure nitrogen atmosphere. The composite silica membranes exhibit molecular sieve properties for small gases like H2, CO2, O2, N2, CH4 and SF6 with hydrogen permeances in the range of (1-4)107 mol•m2•s1•Pa1 (measured at 200 C, 3.0×105 Pa). With respect to the membrane calcined at 500 C, it is found that the permselectivities of H2 (0.289 nm) with respect to N2 (0.365 nm), CH4 (0.384 nm) and SF6 (0.55 nm) are 22.9, 42 and >1000, respectively, which are all much higher than the corresponding Knudsen values (H2/N2 3.7, H2/CH4 2.8, and H2/SF6 8.5).  相似文献   

6.
刺芹侧耳多功能过氧化物酶的纯化与鉴定   总被引:1,自引:1,他引:0       下载免费PDF全文
A versatile peroxidase (VP-Peco60-7) was generated and purified from the liquid culture of Pleurotus eryngii. The purification procedure included ammonium sulfate precipitation, ion exchange chromatography, and gel chromatography. The molecular weight and isoelectric point (pI) of VP-Peco60-7 were determined to be approximately 40 kDa and 4.1, respectively. By N-terminal sequence determination and peptide mapping analysis, VP-Peco60-7 was found to be similar to the versatile peroxidase isoenzyme VPL1, which was previously isolated from liquid cultures of the same species. However, the molecular weight and pI of VP-Peco60-7 were different from those of versatile peroxidases of liquid cultures, implying that the VP-Peco60-7 in this study is of a novel type. With 2,2′-azino-bis-(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) as a substrate, the maximal enzyme activity was obtained at 50 °C and pH 3.0. The catalysis of ABTS by VP-Peco60-7 was expressed by the Michaelis-Menten equation. At 50 °C and pH 3.0, the maxi-mum velocity (Vmax) was 188.68 U•mg1 and the michaelis constant (Km) was 203.09 mmol•L1.  相似文献   

7.
The adsorption equilibrium of a fluoride solution on 1-2 mm granular activated alumina modified by Fe2(SO4)3 solution was investigated. The experiments were conducted using a wide range of initial fluoride concentrations (0.5 to 180 mg•L1 at pH ~7.0) and an adsorbent dose of 1.0 g•L1. The application of Langmuir and Freundlich adsorption isotherm models (linear and nonlinear forms) generally showed that a single Langmuir or Freundlich equation cannot fit the entire concentration gap. Experimental data on low equilibrium concentrations (0.1 to 5.0 mg•L1) was in line with both Langmuir and Freundlich isotherm models, whereas that of high equilibrium concentrations (5.0 to 150 mg•L1) was more in line with the Freundlich isotherm model. A new Langmuir- Freundlich function was used for the entire concentration gap, as well as for low and high concentrations.  相似文献   

8.
The adsorption and mechanism of Re(VII) on resin D318 were studied using chemical methods and IR spectrometry. At pH 5.2, the static and dynamic saturation adsorption capacities were 351.4 and 366.5 mg&;#8226;g&;#61485;1, respectively. The adsorption behavior obeyed the Freundlich empirical equation and the adsorption rate constant k298 was 6.37×10&;#61485;4 s&;#61485;1. The desorption percentage was up to 99.7% when 2.0 mol&;#8226;L&;#61485;1 KSCN was used for dynamic desorption.  相似文献   

9.
Recombinant E. coli BL 21 was cultivated in high cell density to produce human-like collagen. The effects of the feeding of nitrogen source, controlled by an auto on/off-feeding mode with two different cycles of 0.5min and 4min intervals, oxygen-enrichment methods and inducement strength on the cell yield and human-like collagen production were investigated. The studies showed that nitrogen source feeding in fast cycle could result in higher human-like collagen production than that in slow cycle; and the feedback regulation of glucose, increase of the pressure of fermentation bioreactor, and supply of oxygen-enriched air could all increase cell yield and human-like collagen production. The effects of inducement strength on protein expression were found important. When OD600 reached 90-100, the cultivation temperature was increased to 42℃ to begin induction for 2-3 h, and then shifted to 39℃ for 5-6h induction, the cell density and human-like collagen production could reach 96g·L-1 [DCW (dry cell mass)  相似文献   

10.
Effects of salt and temperature on the liquid phase equilibrium of the (water + propionic acid + cyclohexanol) system were investigated. The liquid-liquid equilibrium data in the presence of KCl for various salt ionic strength of 0.5, 1.0, 1.5, 2.0, and 2.5 mol•dm3 and in absence of the salt at T (298.2, 303.2, and 308.2) K were determined. The experimental results were correlated based on the Othmer-Tobias equation and Pitzer ion-interaction model. Thermodynamic properties such as distribution coefficients and activity coefficients of propionic acid in water + cyclohexanol were determined. In addition, the separation factor, S, of the chosen solvent was obtained for the investigated system.  相似文献   

11.
The massive consumption of fossil energy forces people to find new sources of energy. Syngas fermentation has become a hot research field as its high potential in renewable energy production and sustainable development. In this study, trophic anaerobic acetogen Morella thermoacetica was successfully immobilized by calcium alginate embedding method. The ability of the immobilized cells on production of acetic acid through syngas fermentation was compared in both airlift and bubble column bioreactors. The bubble column bioreactor was selected as the better type of bioreactor. The production of acetic acid reached 32.3 g·L-1 in bubble column bioreactor with a space-time yield of 2.13 g·L-1·d-1. The immobilized acetogen could be efficiently reused without significant lag period, even if exposed to air for a short time. A semi-continuous syngas fermentation was performed using immobilized cells, with an average space-time acetic acid yield of 3.20 g·L-1·d-1. After 30 days of fermentation, no significant decrease of the acetic acid production rate was observed.  相似文献   

12.
In order to develop the catalysts with low corrosiveness for the oxidative carbonylation of methanol to dimethyl carbonate (DMC), CuBr2 was selected as the metal source to prepare Cu coordination compo...  相似文献   

13.
In order to facilitate the preparation of paeoniflorin (PF) and albiflorin (AF), two chief bioactive constituents in Paeonia lactiflora Pal (PL), induction and culture of callus from PL were studied. With a modified woody plant medium supplemented with 0.5 mg·L?1 6-benzylaminopurine, 1.0 mg·L?1 naphthylacetic acid, 0.1 mg·L?1 thidiazuron and 30 g·L?1 sucrose, callus was induced from four kinds of explants:leaf, stems, petiole, and root. The potency to form callus varies between different explants and leaf explants exhibits the highest capacity (100%). On the other hand, root-derived cal us (R-callus) produces the highest level of total amount of PF and AF, 31.8 mg·g?1 dry mass, which is higher than the corresponding level in the root of field cultivated PL. Further-more, the time needed is only 40 days, remarkably shorter than the cultivation time of PL, about 4–5 years. Higher accumulation levels of PF and AF with shorter production time indicate that cal us culture of PL is a promising powerful tool for production of PF and AF in the future.  相似文献   

14.
Hierarchical dendritic micro–nano structure Zn Fe_2O_4 have been prepared by electrochemical reduction and thermal oxidation method in this work. X-ray diffractometry, Raman spectra and field-emission scanning electron microscopy were used to characterize the crystal structure, size and morphology. The results show that the sample(S-2) is composed of pure ZnFe_2O_4 when the molar ratio of Zn~(2+)/Fe~(2+)in the electrolyte is 0.35. Decreasing the molar ratio of Zn~(2+)/Fe~(2+), the sample(S-1) is composed of ZnFe_2O_4 and α-Fe_2O_3, whereas increasing the molar ratio of Zn~(2+)/Fe~(2+), the sample(S-3) is composed of ZnFe_2O_4 and Zn O. The lattice parameters of ZnFe_2O_4 are influenced by the molar ratio of Zn~(2+)/Fe: Zn at excess decreases the cell volume whereas Fe at excess increases the cell volume of Zn Fe_2O_4. All the samples have the dendritic structure, of which S-2 has micron-sized lush branches with nano-sized leaves. UV–Vis diffuse reflectance spectra were acquired by a spectrophotometer. The absorption edges gradually blue shift with the increase of the molar ratio of Zn~(2+)/Fe~(2+). Photocatalytic activities for water splitting were investigated under Xe light irradiation in an aqueous olution containing 0.1 mol·L~(-1)Na_2S/0.02 mol·L~(-1)Na_2SO_3 in a glass reactor. The relatively highest photocatalytic activity with 1.41 μmol·h-1· 0.02 g~(-1)was achieved by pure ZnFe_2O_4sample(S-2). The photocatalytic activity of the mixture phase of Zn Fe_2O_4 and α-Fe_2O_3(S-1) is better than ZnF e_2O_4 and ZnO(S-3).  相似文献   

15.
Hydrate crystals growth on the surface of methane bubble (hydrate film) in pure water was studied by using a high-pressure visible microscope under the conditions of subcooling ΔT = 5.44–13.72 K and methane concentration difference ΔC = 2.92–8.19 mol·L-1. It was found the hydrate film is porous and the hydrate crystals grow towards the liquid phase on the film substrate. The crystal morphology and growth rate are affected by ΔT and ΔC. When ΔT < 8.82 K and ΔC < 4.12 mol·L-1, the hydrate grows into scattered columnar crystals, and the axial growth rate of the crystal gradually decreases. When ΔT > 8.82 K or ΔC > 4.12 mol·L-1, the hydrate crystals grow in dendritic shape, and the axial growth rate increases first and then decreases. The perimeter and area of the growing hydrate crystals were measured, and the fractal dimension of hydrate crystal under different ΔC and ΔT was calculated. The results show that the fractal dimension of columnar hydrate crystal is greater than 3. When 3.87 mol·L-1 < ΔC < 4.20 mol·L-1 and 7.4 K < ΔT < 8.8 K, the fractal dimension of columnar hydrate crystal is greater than 4; The fractal dimension of dendritic hydrate crystal is less than 3. When ΔC > 4.77 mol·L-1, ΔT < 8.52 K, the fractal dimension of dendritic hydrate crystal is less than 2.  相似文献   

16.
过表达谷氧还蛋白基因GRX5提高酿酒酵母乙酸耐性   总被引:1,自引:0,他引:1       下载免费PDF全文
利用可再生的纤维素原料生产燃料乙醇是国内外研究的热点。但纤维素原料一些预处理过程产生的乙酸对酿酒酵母细胞生长和乙醇发酵产生强烈抑制,因此,提高酿酒酵母细胞的乙酸耐受性是提高纤维素乙醇发酵效率的重要手段。本文研究了谷氧还蛋白家族中GRX5p的编码基因的过表达对酿酒酵母在乙酸胁迫条件下细胞生长和发酵性能的影响。结果表明,过表达GRX5的重组菌株在含有5 g·L-1乙酸的平板中生长优于对照菌株;在含有5 g·L-1乙酸的培养基中进行乙醇发酵,过表达GRX5的重组菌株可在48 h基本消耗培养基中所有的葡萄糖,发酵周期比对照菌株缩短了12 h。过表达GRX5菌株的乙醇生产强度为0.897 g·L-1·h-1,比对照提高了28.5%。代谢物分析结果表明,过表达GRX5的重组菌株可产生更多的保护性物质海藻糖和甘油,有利于增强菌株胁迫耐受性。  相似文献   

17.
The corrosion inhibition action of three newly synthesized furanylnicotinamidine derivatives namely: 6-[5-{4(dimethylamino)phenyl}furan-2-yl]nicotinamidine(MA-1256), 6-[5-(4-chlorophenyl)furan-2-yl]nicotinamidine(MA-1266), and 6-[5-{4-(dimethylamino)phenyl}furan-2-yl]nicotinonitrile(MA-1250) on carbon steel(C-steel) was investigated in 1.0 mol·L~(-1) HCl solution by weight loss(WL), potentiodynamic polarization(PP), electrochemical impedance spectroscopy(EIS), and electrochemical frequency modulation(EFM)techniques. Morphological analysis was performed on the uninhibited and inhibited C-steel using atomic force microscope(AFM) and Infrared Spectroscopy(ATR-IR) methods. The effect of temperature was studied and discussed. Inspection of experimental results revealed that the inhibition efficiency(IE) increases with the incremental addition of inhibitors and with elevating the temperature of the acid media. The adsorption of furanylnicotinamidine derivatives on C-steel follows Temkin's isotherm. PP studies indicated that the investigated compounds act as mixed-type inhibitors and showed that p-dimethylaminophenyl furanylnicotinamidine derivative(MA-1256) was the most efficient inhibitor among the other studied derivatives with IE reached(95%)at 21 × 10~(-6) mol·L~(-1). MA-1266 is highly soluble in aqueous solution and has non-toxicity profile with LC50 N 37 mg·L~(-1). Thus, MA-1266 can be a promising green corrosion inhibitor candidate with IE N 91% at 21× 10~(-6) mol·L~(-1). The experiments were coupled with computational chemical theories such as quantum chemical and molecular dynamic methods. The experimental results were in good agreement with the computational outputs.  相似文献   

18.
This study covers the transportation of Cu(Ⅱ) ions by multi-dropped liquid membrane(MDLM) system and tri-noctylamine(TNOA) as carrier in kerosene. Batch experiments are held to obtain optimum conditions for the transportation of Cu(Ⅱ) ions such as volume of donor, organic, and acceptor phase 100 ml, p H of donor phase9.00, temperature 298.15 K, concentration of H_2SO_4 in acceptor phase 1.00 mol·L~(-1), concentration of TNOA in organic phase 5.00 × 10~(-3)mol·L~(-1)and rate of peristaltic pump 50 ml·min~(-1). Optimum circumstances of this extraction are as follows: p H of donor phase is 9.00, concentration of TNOA is 5.00 × 10~(-3)mol·L~(-1),1.00 mol·L~(-1)H_2SO_4 as acceptor phase, and flux rate is 50 ml·min~(-1). Cu(Ⅱ) ion transportation is consecutive first order irreversible reaction. Activation energy is found as 5.22 kcal·mol-1(21.82 k J·mol~(-1), this process is called as diffusion controlled system. Selective transportation of Cu(Ⅱ) ions with alkaline, alkaline earth, and different heavy metal ions at optimum conditions of single Cu(Ⅱ) extraction was conducted. According to the selective transportation Cu(Ⅱ) ions with alkaline and alkaline earth metal ions, Na~+, K~+, and Ba~(2+)ions are not detected in the acceptor phase, but 12.00% of Ca~(2+)ions is transported from donor phase to acceptor phase. At the end of the simultaneous extraction of Zn(Ⅱ), Fe(ⅡI), and Mo(VI) with Cu(Ⅱ) ions, 2.20% of Mo(VI), 0.80% of Fe(Ⅲ) and 3.60% of Zn(Ⅱ) are detected in the acceptor phase.  相似文献   

19.
EU-1 zeolites were sequentially treated with low-concentration sodium carbonate(Na_2CO_3) and hydrochloric acid(HCl) solutions.The obtained samples were characterized by X-ray diffraction(XRD),scanning electron microscopy(SEM),N_2 adsorption/desorption,temperature programmed desorption of NH_3(NH_3-TPD),solid state~(27)A1 nuclear magnetic resonance(~(27)A1 NMR),and the catalytic performances of the treated samples were tested in the xylene isomerization reaction.The results showed that the external surface area and mesoporous volume of the sample sequentially treated with 0.05 mol·L~(-1) Na_2CO_3 and 0.1 mol·L~(-1) HCl solutions reached73.9 m~2·g~(-1) and 0.162 cm~3·g~(-1),respectively.The catalytic performances of EU-1 zeolites were significantly improved,that the activity of the probe reaction increased from 23.03%to 23.61%and the selectivity increased from85.09%to 87.14%compared with those of parent sample.Furthermore,it was found that only amorphous silica and alumina species was dissolved during the post-treatment process,but the framework structure and the acidic properties of EU-1 zeolite remained intact.  相似文献   

20.
Powdery Li+-imprinted manganese oxides adsorbent was widely used to the recovery of Li+, but there are some difficulties, such as poor stability in acid solution, inconvenience of operation and separation. In this work, a useful hydrogel composite based H4Mn3.5Ti1.5O12/reduced graphene oxide/polyacrylamide (HMTO-rGO/PAM) was fabricated by thermal initiation method with promising stable, conductive and selective properties. The resulting materials were characterized by field emission scanning electron microscope, infrared absorption spectrum, X-ray diffraction, X-ray photoelectron spectroscopy and electrochemical techniques. The recovery of Li+ was investigated using HMTO-rGO/PAM from brine by a separated two-stage sorption statically and electrically switched ion exchange desorption process. The adsorption capacity of 51.5 mg·g-1 could be achieved with an initial Li+ concentration of 200 mg·L-1 in pH 10, at 45 ℃ for 12 h. Li+ ions could be quickly desorbed by cyclic voltammetry (CV) in pH 3, 0.1 mol·L-1 HCl/NH4Cl accompanying the exchange of Li+ and H+(NH4+) and the transfer of LMTO-rGO/PAM to HMTO-rGO/PAM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号