首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A single-chip (67/spl times/90 mil) integrated-circuit operational amplifier using thin-film resistors and super-gain transistors has been designed to achieve dc follower accuracies of 0.001 percent with 100-k/spl Omega/ source resistance. The circuit achieves gains of 140 dB using thermally balanced layout designs for both input and output stages, nulled drifts of 0.3 /spl mu/V//spl deg/C, and offset currents well under 1 nA. All other dc specifications including power-supply variation error (PSRR), common-mode gain error (CMRR), etc., are in the 1-10 ppm error range; and a procedure is given by which long-term drifts of less than 10 /spl mu/V/month can be assured. AC performance is comparable to general-purpose integrated-circuit operational amplifiers, i.e., f/SUB t/=300 kHz and slew rate of 1.2 V//spl mu/s at gain of ten. The circuit is externally compensated for unity gain with a single 390-pF capacitor and is fully input and output protected.  相似文献   

2.
A CMOS chopper amplifier   总被引:1,自引:0,他引:1  
A highly sensitive CMOS chopper amplifier for low-frequency applications is described. It is realized with a second-order low-pass selective amplifier using a continuous-time filtering technique. The circuit has been integrated in a 3-/spl mu/m p-well CMOS technology. The chopper amplifier DC grain is 38 dB with a 200-Hz bandwidth. The equivalent input noise is 63 nV//spl radic/Hz and free from 1/f noise. The input offset is below 5 /spl mu/V for a tuning error less than 1%. The amplifier consumes only 34 /spl mu/W.  相似文献   

3.
This work presents a micro-power low-offset CMOS instrumentation amplifier integrated circuit with a large operating range for biomedical system applications. The equivalent input offset voltage is improved using a new circuit technique of offset cancellation that involves a two-phase clocking scheme with a frequency of 20 kHz. Channel charge injection is cancelled by the symmetrical circuit topology. With the wide-swing cascode bias circuit design, this amplifier realizes a very high power-supply rejection ratio (PSRR), and can be operated at single supply voltage in the range between 2.5-7.5 V. It was fabricated using 0.5-/spl mu/m double-poly double-metal n-well CMOS technology, and occupies a die area of 0.2 mm/sup 2/. This amplifier achieves a 160-/spl mu/V typical input offset voltage, 0.05% gain linearity, greater than 102-dB PSRR, an input-referred rms noise voltage of 45 /spl mu/V, and a current consumption of 61 /spl mu/A at a low supply voltage of 2.5 V. Experimental results indicate that the proposed amplifier can process the input electrocardiogram signal of a patient monitoring system and other portable biomedical devices.  相似文献   

4.
A high performance and compact current mirror with extremely low input and high output resistances (R/sub in//spl sim/0.01/spl Omega/, R/sub out//spl sim/10 G/spl Omega/), high copying accuracy, very low input and output voltage requirements (V/sub in/, V/sub out//spl ges/V/sub DSsat/), high bandwidth (200 MHz using a 0.5 /spl mu/m CMOS technology) and low settling time (25 ns) is proposed. Simulations and experimental results are shown that validate the circuit.  相似文献   

5.
A new readout circuit involving two-step current-mode background suppression is studied for two-dimensional long-wavelength infrared focal plane arrays (2-D LWIR FPAs). Buffered direct injection (BDI) and a feedback amplifier are used for the input circuit and background suppression circuit, respectively. The readout circuit has been fabricated using a 0.6-/spl mu/m 2-poly 3-metal CMOS process for a 64/spl times/64 LWIR HgCdTe IR array with a pixel size of 50 /spl mu/m/spl times/50 /spl mu/m. The simple pixel circuit has a very small skimming error of less than 0.3% and low noise characteristics for an adequate calibration range and integration time.  相似文献   

6.
A high-speed driving scheme and a compact high-speed low-power rail-to-rail class-B buffer amplifier, which are suitable for small- and large-size liquid crystal display applications, are proposed. The driving scheme incorporates two output driving stages in which the output of the first output driving stage is connected to the inverting input and that of the second driving stage is connected to the capacitive load. A compensation resistor is connected between the two output stages for stability. The second output stage is used to improve the slew rate and the settling time. The buffer draws little current while static but has a large driving capability while transient. The circuit achieves the large driving capability by employing simple comparators to sense the transients of the input to turn on the output stages, which are statically off in the stable state. This increases the speed of the circuit without increasing static power consumption too much. A rail-to-rail folded-cascode differential amplifier is used to amplify the input signal difference and supply the bias voltages for the second stage. An experimental prototype output buffer implemented in a 0.35-/spl mu/m CMOS technology demonstrates that the circuit draws only 7-/spl mu/A static current and exhibits the settling times of 2.7 /spl mu/s for rising and 2.9 /spl mu/s for falling edges for a voltage swing of 3.3 V under a 600-pF capacitance load with a power supply of 3.3 V. The active area of this buffer is only 46.5/spl times/57/spl mu/m/sup 2/.  相似文献   

7.
A CMOS analog front-end IC for portable EEG/ECG monitoring applications   总被引:1,自引:0,他引:1  
A new digital programmable CMOS analog front-end (AFE) IC for measuring electroencephalograph or electrocardiogram signals in a portable instrumentation design approach is presented. This includes a new high-performance rail-to-rail instrumentation amplifier (IA) dedicated to the low-power AFE IC. The measurement results have shown that the proposed biomedical AFE IC, with a die size of 4.81 mm/sup 2/, achieves a maximum stable ac gain of 10 000 V/V, input-referred noise of 0.86 /spl mu/ V/sub rms/ (0.3 Hz-150 Hz), common-mode rejection ratio of at least 115 dB (0-1 kHz), input-referred dc offset of less than 60 /spl mu/V, input common mode range from -1.5 V to 1.3 V, and current drain of 485 /spl mu/A (excluding the power dissipation of external clock oscillator) at a /spl plusmn/1.5-V supply using a standard 0.5-/spl mu/m CMOS process technology.  相似文献   

8.
Results from silicon-on-insulator (SOI) MESFETs designed for subthreshold operation are presented. The transistors have subthreshold slopes as low as 78 mV/dec and off-state drain currents approaching 1 pA//spl mu/m. Drain current saturation can be achieved with drain voltages of less than 0.5 V and with output impedance>100 M/spl Omega//spl middot//spl mu/m. The cutoff frequency of a 500-nm gate length device exceeds 1 GHz at currents significantly less than 1 /spl mu/A//spl mu/m. These results suggest that subthreshold SOI MESFETs might have useful applications in mixed-signal, micropower circuit design.  相似文献   

9.
A switched-capacitor instrumentation amplifier which uses correlated-double sampling to reduce the amplifier offset is discussed. Additional offset caused by clock-related charge injection is cancelled by a symmetrical differential circuit topology and a three-phase clocking scheme. An experimental low-power test cell has been integrated, showing 100 /spl mu/V equivalent offset voltage and input noise equal to 270 /spl mu/V. For a fixed gain equal to 10- and 9-kHz sampling frequency, the power dissipation is 36 /spl mu/W (power supply: 5 V); the circuit measures only 0.2 mm/SUP 2/.  相似文献   

10.
High-speed, 12 bit accurate successive approximation A/D converters demand a comparator with both excellent input specifications and fast response time. The author describes a voltage comparator with 50 ns response time to 1/2 LSB overdrive (1.2 mV) and 0.1 LSB (250 /spl mu/V) total input error. Unique features of the circuit include a super-/spl beta/ input stage, a fast buried-zener level-shift, a fully differential output stage, a floating-zener biasing scheme, and a fast latch circuit which does not interfere with input accuracy. The comparator is manufactured on a bipolar, double-implanted, thin epi, junction-isolated process.  相似文献   

11.
This paper presents the design of an optical receiver analog front-end circuit capable of operating at 2.5 Gbit/s. Fabricated in a low-cost 0.35-/spl mu/m digital CMOS process, this integrated circuit integrates both transimpedance amplifier and post limiting amplifier on a single chip. In order to facilitate high-speed operations in a low-cost CMOS technology, the receiver front-end has been designed utilizing several enhanced bandwidth techniques, including inductive peaking and current injection. Moreover, a power optimization methodology for a multistage wide band amplifier has been proposed. The measured input-referred noise of the optical receiver is about 0.8 /spl mu/A/sub rms/. The input sensitivity of the receiver front-end is 16 /spl mu/A for 2.5-Gbps operation with bit-error rate less than 10/sup -12/, and the output swing is about 250 mV (single-ended). The front-end circuit drains a total current of 33 mA from a 3-V supply. Chip size is 1650 /spl mu/m/spl times/1500 /spl mu/m.  相似文献   

12.
An integrated two-wire bridge-to-frequency converter is presented for use as a remote-signal conditioner for sensor bridges such as strain-gauge bridges of platinum-wire temperature-sensing bridges. The converter has a sensitivity on the order of 1 Hz per 1-/spl mu/V/V relative bridge output. A center frequency of 10 kHz allows the application of an untrimmed bridge with an imbalance up to /spl plusmn/10000 /spl mu/V/V. The instability is less than 10/SUP -4/ per Kelvin and per 1-V supply-voltage variation. The untrimmed transfer inaccuracy is lower than 1%. The linearity error is lower than 0.01%. Different bridge readout functions can be chosen by different circuit configurations. The converter can be connected to a single supply voltage. The frequency output is modulated on the supply current. The supply voltage is 12-24 V.  相似文献   

13.
1.5 V four-quadrant CMOS current multiplier/divider   总被引:1,自引:0,他引:1  
A low voltage CMOS four-quadrant current multiplier/divider circuit is presented. It is based on a compact V-I converter cell able to operate at very low supply voltages. Measurement results for an experimental prototype in a 0.8 /spl mu/m CMOS technology show good linearity for a /spl plusmn/15 /spl mu/A input current range and a 1.5 V supply voltage.  相似文献   

14.
Describes a high speed 16K molybdenum gate (Mo-gate) dynamic MOS RAM using a single transistor cell. New circuit technologies, including a capacitive-coupled sense-refresh amplifier and a dummy sense circuit, enable the achievement of high speed performance in combination with reduced propagation delay in the molybdenum word line due to the low resistivity. The n-channel Mo-gate process was established by developing an evaporation apparatus and by an improved heat treatment to reduce surface charge density. Ultraviolet photolithography for 2 /spl mu/m patterns and HCl oxidation for 400 /spl Aring/ thick gate oxide are used. The 16K word/spl times/1 bit device is fabricated on a 3.2 mm/spl times/4.0 mm chip. Cell size is 16 /spl mu/m/spl times/16 /spl mu/m Access time is less than 65 ns at V/SUB DD/=7 V and V/SUB BB/=-2 V. Power dissipation is 210 mW at 170 ns read-modify-write (RMW) cycle.  相似文献   

15.
A packaged D-type flip-flop (DFF) decision circuit for optical OC-768 systems and testing equipment is reported. The circuit uses 1 /spl mu/m InP SHBT technology featuring f/sub T//f/sub max/=150 GHz and has been operated up to 45 Gb/s with a clock phase margin about 180/spl deg/. Measured output eye diagrams from packaged devices exhibit 9/8 ps rise/fall with only 3ps peak-peak jitter. A single-ended AC-coupled clock input makes the application of this circuit very convenient. The IC dissipates 440 mW from a -4V supply voltage.  相似文献   

16.
A CMOS switched capacitor instrumentation amplifier is presented. Offset is reduced by an auto-zero technique and effects due to charge injection are attenuated by a special amplifier configuration. The circuit which is realized in a 4-/spl mu/m double poly process has an offset (/spl tau/) of 370 /spl mu/V, an rms input referred integrated noise (0.5 -f/sub c//2) of 79 /spl mu/V, and consumes only 21 /spl mu/W (f/sub c/ = 8 kHz, V/sub DD/ = 3 V).  相似文献   

17.
64K/spl times/1 and 16K/spl times/4 CMOS SRAMs which achieve an access time of 13 ns and less than 12-mA active current at 10 MHz are described. A double-metal 1.5-/spl mu/m p-well process is used. A chip architecture with local amplification improves signal speed and data integrity. Address stability detection techniques are introduced as a method of assuring full asynchronicity over a wide range of conditions. A chip-select speed-up circuit allows high-speed access from a power-down mode. A memory cell design is presented which has improved layout efficiency (area of 189 /spl mu/m/SUP 2/), yet provides a very high cell ratio of 3:1 for signal stability and margin. Experimental results are presented which demonstrate full performance under address skews and other asynchronous input conditions. High-speed enable access and address access are observed over a wide range of operating conditions.  相似文献   

18.
In this paper, novel channel and source/drain profile engineering schemes are proposed for sub-50-nm bulk CMOS applications. This device, referred to as the silicon-on-depletion layer FET (SODEL FET), has the depletion layer beneath the channel region, which works as an insulator like a buried oxide in a silicon-on-insulator MOSFET. Thanks to this channel structure, junction capacitance (C/sub j/) has been reduced in SODEL FET, i.e., C/sub j/ (area) was /spl sim/0.73 fF//spl mu/m/sup 2/ both in SODEL nFET and pFET at Vbias =0.0 V. The body effect coefficient /spl gamma/ is also reduced to less than 0.02 V/sup 1/2/. Nevertheless, current drives of 886 /spl mu/A//spl mu/m (I/sub off/=15 nA//spl mu/m) in nFET and -320 /spl mu/A//spl mu/m (I/sub off/=10 nA//spl mu/m) in pFET have been achieved in 70-nm gate length SODEL CMOS with |V/sub dd/|=1.2 V. New circuit design schemes are also proposed for high-performance and low-power CMOS applications using the combination of SODEL FETs and bulk FETs on the same chip for 90-nm-node generation and beyond.  相似文献   

19.
We have developed a new capacitive transimpedance amplifier (CTIA) that can be operated at 2 K, and have good performance as readout circuits of astronomical far-infrared array detectors. The circuit design of the present CTIA consists of silicon p-MOSFETs and other passive elements. The process is a standard Bi-CMOS process with 0.5 /spl mu/m design rule. The open-loop gain of the CTIA is more than 300, resulting in good integration performance. The output voltage swing of the CTIA was 270 mV. The power consumption for each CTIA is less than 10 /spl mu/W. The noise at the output showed a 1/f noise spectrum of 4 /spl mu/V//spl radic/Hz at 1 Hz. The performance of this CTIA nearly fulfills the requirements for the far-infrared array detectors onboard ASTRO-F, Japanese infrared astronomical satellite to be launched in 2005.  相似文献   

20.
The relationship between sensitivity and other factors in the sense circuit of a single transistor MOS RAM has been investigated by computer simulation. An expression for sensitivity of the sense circuit has been derived. It suggests key points to increase the sensitivity of the sense circuit. A new sense circuit that defects a signal less than /spl plusmn/30 mV and has low power capability 50 /spl mu/W/circuit is realized by following the suggestions. The high performance of the proposed sense circuit has been verified through the fabrication of a 1K MOS RAM. Fine pattern technology, such as 2-/spl mu/m minimum pattern width and spacing and 500-/spl Aring/ gate oxide thickness, has been adopted. The threshold voltage of the MOS transistor is 0.8 V and dc supplies are 7 V and /spl plusmn/2 V. This 1K RAM has characteristics of 80-ns access time, 150-ns cycle time, and 30-mW power dissipation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号