首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Al2O3-Ni composite materials have been made by a hot pressing technique. Two composite microstructures, i.e. a dispersive distribution of nickel particles and a network distribution of nickel particles in an alumina matrix, have been produced. The fracture toughness of the composite materials has been measured by a double cantilever beam method. Both composites are tougher than the virgin alumina matrix. The fracture toughness of the composite with a network microstructure is much higher and has a more desirable R-curve behaviour than the composite with a microstructure of dispersed particles. For the particulate dispersion microstructure, the main limitation to toughening is the lack of plastic deformation of the ductile nickel due to the pull out of nickel particles, indicating weak bonding at the Al2O3/Ni interface. For the network microstructure composite, the gauge length of the ductile phase is much larger, allowing the ductile nickel to stretch to failure between the crack faces. A large extent of nickel plastic deformation has been observed, and the weak bonding at the Al2O3/Ni interface can promote partial debonding and contribute further to toughening.  相似文献   

2.
The effect of shape and volume percent of Mo particles on theflexural strength and fracture toughness of MgO-Al2O3-SiO2(MAS) glass/Mo composites was investigated. The flexural strengthand fracture toughness of composites depends heavily on Mo particleshapes, and there is greater improvement in composites reinforcedwith flaky rather than massive Mo particles. In the compositesreinforced with flaky Mo particles, fracture toughness increases withvolume percent of Mo and, at 50 vol% Mo, is 11.6 MPam,which is approximately 6.7 times higher than that of the matrix. Increases in fracture toughness of composites reinforced with flakyMo particles is greater than with SiC whiskers, SiC platelets, SiC particles or ZrO2 particles. Fabricating composites reinforcedwith flaky Mo particles is an effective toughening technique capableof simultaneously improving the strength and toughness of brittlematerials, such as monolithic Al2O3 and MAS glass, by utilizing plastic deformation of ductile phase.  相似文献   

3.
Commercially pure Al base short steel fiber reinforced composites were prepared by stir casting method and poured into a cast iron mould. Steel fibers were coated with copper and nickel by electroless deposition method. The density, hardness and strength of composites increased as compared to matrix alloy. The mechanical properties of these composites were measured and the results were correlated with the microstructure observation. It was found that copper-coated short steel fiber reinforced composites show considerable improvement in strength with good ductility because copper form a good interface between Al matrix and short steel fiber. Nickel-coated steel fiber reinforced composites showed improvement in strength to a lower extent possibly because of formation of intermetallic compound at the interface. The improvement in strength with uncoated fibers and nickel-coated fibers is on the lower side because of formation of brittle intermetallic compounds like Fe2Al5 and FeAl3. Fracture surface of tensile specimen was examined under SEM, which revealed a ductile fracture. Copper coating on steel fiber improved the strength properties while retaining a high level of ductility due to better interface bonding.  相似文献   

4.
Brittleness problem imposes a severe restriction on the potential application of tungsten as high-temperature structural material. In this paper, a novel toughening method for tungsten is proposed based on reinforcement by tungsten wires. The underlying toughening mechanism is analogous to that of fiber-reinforced ceramic matrix composites. Strain energy is dissipated by debonding and frictional sliding at engineered fiber/matrix interfaces. To achieve maximum composite toughness fracture mechanical properties have to be optimized by interface coating. In this work, we evaluated six kinds of ZrOx-based interface coatings. Interfacial parameters such as shear strength and fracture energy were determined by means of fiber push-out tests. The parameter values of the six coatings were comparable to each other and satisfied the criterion for crack deflection. Microscopic analysis showed that debonding occurred mostly between the W filament and the ZrOx coating. Feasibility of interfacial crack deflection was also demonstrated by a three-point bending test.  相似文献   

5.
An experimental study was carried out to find material parameters for making fiber reinforced cementitious composites (FRCC) more ductile. One of the dominant factors to control the ductility might be hidden in fracture property of matrix as well as the interface property between fiber and matrix. Therefore this study varied air content and water-binder ratio as the parameters to change the fracture property of matrix and experimentally examined their influence on the ductility of FRCC by three-point bend test with notched beams. As a result, it is concluded that fracture toughness of the matrix could be one of key parameters to control the ductility of FRCC. In case of a polyethylene fiber used in this study, the optimum value of the fracture toughness (critical strain energy release rate): GIC of the matrix was obtained to be 7.5-8.0 N/m.  相似文献   

6.
The morphology, deformation and fracture properties of polypropylene sheets filled with untreated and epoxidized natural rubber (ENR)-treated coal gangue powder (CGP) were investigated by scanning electron microscope (SEM) and the essential work of fracture (EWF) method. The results show that ENR obviously improves the dispersion of CGP particles in the PP matrix and the interfacial adhesion between CGP particles and PP matrix with the well-established interfacial layer. It is found that all composites fracture in a ductile manner as ligament yields completely and crack propagates steadily. The fracture toughness (w e ) of the composites is significantly improved with the complete interfacial layer formed by ENR on the surface of CGP particles. With increasing ENR content, the specific plastic work (w p ) per volume unit of plastic zone of the composites increases considerably in spite of the restricted plastic deformation of plastic zones. In Addition, the fracture parameters of different stages of tensile process demonstrate that the positive effect of ENR on the fracture performance of the composites is mainly achieved by notably reinforcing crack resistance at the stage of necking-tearing after yielding.  相似文献   

7.
The room temperature mechanical properties of Al2O3 composites reinforced with 25 vol% of either MoSi2 or Nb particulates were investigated. It was found that addition of Nb particles resulted in a reduction in the elastic modulus, but caused a significant increase in both flexural strength and fracture toughness. On the other hand, the addition of MoSi2 particles resulted in only a marginal decrease in elastic modulus and marginal increase in both flexural strength and fracture toughness. The elastic modulus results were explained on the basis of Tsai - Halpin model. For both the composites, the increase in flexural strength was attributed to the grain refinement of the Al2O3 matrix as well as the load transfer to the reinforcement particles. The marginal increase in fracture toughness in Al2O3 / MoSi2 composites was attributed to crack deflection, whereas the threefold increase in fracture toughness in Al2O3 / Nb composites was attributed to crack blunting and bridging.  相似文献   

8.
This paper outlines the fracture behavior of composites with thermoplastic matrices of different fracture toughness Kcm (increasing in the order PPSPET (I) → PET (II) → ETFEPC). In particular, the way in which the fracture toughness of these composite systems, Kcc, is affected by the volume fraction, orientation and distribution of short glass fibers across the plaque thickness (fiber length ≈ 200 μm, fiber diameter ≈ 10 μm), and by the quality of their interfacial bonding to the matrix is discussed. SEM studies were carried out to define the microstructural details and the dominant mechanisms of energy adsorption during breakdown of the composites.In general, an increase in composite toughness can be expected with increasing extent of reinforcement if the matrix is in a brittle condition (here also verified by Kc-tests at lower temperatures) and if the fibers are well bonded and mostly oriented perpendicular to the crack front. An opposite tendency may occur for matrices which behave in a highly ductile manner even in the presence of fibers. The probability of this behavior is favored in poorly bonded systems. The results are discussed in terms of a ‘microstructural efficiency factor’ M, which mainly considers the relative contributions of fiber and matrix related mechanisms to energy dissipation during breakdown of a composite (‘energy absorption ratio’ n) as well as the reinforcement content and its arrangement in the matrix (‘reinforcing effectiveness parameter’ R).  相似文献   

9.
The toughening effect of the short carbon fibers in the ZrB2–ZrSi2 ceramic composites were investigated, where the ZrB2–ZrSi2 ceramics without carbon fibers were used as the reference. The mechanical properties were evaluated by means of flexural and SENB tests, respectively. The microstructure was characterized by SEM equipped with EDS. The results found that the short carbon fibers were uniformly incorporated in the ZrB2–ZrSi2 matrix and the relative density was about 97.92%. The flexural strength of short carbon fiber-reinforced ZrB2–ZrSi2 composites is 437 MPa; the fracture toughness and the work of fracture are 6.89 MPa m1/2 and 259 J/m2, respectively, which increased significantly in comparing with composites without fibers. The microstructure analysis revealed that the improved fracture toughness could be attributed to the fiber bridging, the fiber–matrix interface debonding and the fiber pullout, which consumed more fracture energy during the fracture process.  相似文献   

10.
Industrial pure aluminum (0.5 wt% impurity elements) was utilized in many investigations of aluminum matrix composites at home and abroad. However, impurity elements in industrial pure aluminum may influence the interface during fabrication of composite at high temperature. Thereby, it is necessary to use high-purity aluminum (impurity elements less than 0.01%) as matrix to enable study the interface reaction between reinforcement and matrix. In this study, stretches of brittle Al4C3 at the fiber/matrix interfaces in Grf/Al composite were observed. The fracture surface of the composite after tensile and bending tests was flat with no fiber pull-out, which revealed characteristic of brittle fracture. This was related to Al4C3, as this brittle phase may break before the fiber during loading and become a crack initiation point, while the corresponding crack may propagate in the fiber and the surrounding aluminum matrix, finally resulting in low stress fracture of composites.  相似文献   

11.
基于细观结构分析理论,研究界面对韧性复合材料宏观强度的影响。提出一种基于细观摄动位移(Microscopic fluctuation displacement, MFD)的界面模型,以断裂韧性表征界面抵抗脱粘失效的能力。数值算例显示界面对复合材料离轴强度影响较大,界面的破坏改变了基体塑性区的分布规律。  相似文献   

12.
Abstract

Composite materials produced from ceramic reinforcement of aluminium alloys have some properties that are better (higher modulus and strength, lower thermal expansion coefficient and density, and good creep and wear resistance) than those of the conventional monolithic aluminium alloys. However, they have a poor fracture toughness. The aim of the present work was to characterise the structure and mechanical properties of two different aluminium matrix composites (AS9C1G/20%(Al2O3-SiO2) and 2014/20%(Al2O3-SiO2)) manufactured using the vertical squeeze casting technique. Tensile, plane strain fracture toughness, and fatigue crack growth rate tests were carried out. In particular, the influence of specimen geometry on the toughness tests was examined. It was found that chevron notched short bar specimens gave toughness values ~ 40% higher than other types of specimens. Fatigue crack growth rate data were interpolated using some semiempirical models. An accurate metallographic investigation of both the structures and the fatigue fracture surfaces was carried out using optical microscopy and energy dispersive spectroscopy with SEM.  相似文献   

13.
This paper presents the method for measurement of the adhesion force and fracture strength of the interface between ceramic particles and metal matrix in ceramic reinforced-metal matrix composites. Three samples with the following Cu to Al2O3 ratio (in vol.%) were prepared: 98.0Cu/2.0Al2O3, 95.0Cu/5.0Al2O3 and 90Cu/10Al2O3. Furthermore, microwires which contain a few ceramic particles were produced by means of electro etching. The microwires with clearly exposed interface were tested with use of the microtensile tester. The microwires usually break exactly at the interface between the metal matrix and ceramic particle. The force and the interface area were carefully measured and then the fracture strength of the interface was determined. The strength of the interface between ceramic particle and metal matrix was equal to 59 ± 8 MPa and 59 ± 11 MPa in the case of 2% and 5% Al2O3 to Cu ratio, respectively. On the other hand, it was significantly lower (38 ± 5 MPa) for the wires made of composite with 10% Al2O3.  相似文献   

14.
Abstract

The microstructural degradation of aluminium alloy composites by external tensile loading was continuously observed by in situ scanning electron microscopy tensile testing. The composites, which contained spherical Al2O3 and angular SiC particles, were prepared by the powder extrusion method. Some microcracks were initiated at small plastic strains after yielding in both composites by inteliace debonding and particle cracking. Angular particles generate microvoids at smaller strains than spherical particles. The microcracks do not propagate with increasing external loading because of the ductility of the matrix, but a number of new microcracks developed just before failure. Most microcracks are due to interface debonding rather than particle cracking. Many dimples on the matrix aluminium alloy are observed on some particles seen in the fracture surface, which proves that there is relatively strong bonding between the matrix and the particles in the composite produced by powder extrusion. However, part of the original surface observed on the debonded particles indicates that an incompletely bonded interface also exists in the composites.

MST /3111  相似文献   

15.
Dense Al2O3 particle-Y-TZP matrix (Al2O3<40 vol%) composite was prepared by pressureless sintering at 1550°C. Composites with 10–30 vol% Al2O3 particles showed enhanced fracture toughness, bending strength and Vicker's hardness as compared to single-phase Y-TZP. The highest strength (1150 MPa) and highest toughness (12.4 MPa m1/2) were obtained for the composite containing 10 vol% Al2O3. It was found that, in addition to the contribution by the crack-deflection effect, the enhanced phase transformation from tetragonal to monoclinic during fracture was the main toughening mechanism in operation in the composites.  相似文献   

16.
The effect of SiC particulate dispersoids on the fracture toughness and strength of hot-pressed Al2O3-based composites was evaluated. Addition of 20 vol % SiC particulates was found to increase both the fracture toughness and strength of Al2O3. The relationships between mechanical properties and SiC additions are discussed.  相似文献   

17.
BAS glass-ceramic composites reinforced with different volume fractions (0, 10, 20, 30, 40 vol%) of SiC whiskers were successfully fabricated by a hot-pressing method. The microstructure, whisker/matrix interface structure, phase constitution and mechanical properties of the composites have been systematically studied by means of SEM, TEM, XRD techniques as well as three-point bending tests. It was demonstrated that the incorporation of SiC whiskers could significantly increase the flexural strength and fracture toughness of BAS glass-ceramic matrixes. The celsian seeds can effectively promote the hexacelsian-to-celsian transformation in BaAl2Si2O8. The active Al2O3 added to the BAS matrix obviously reduced the amount of SiO2 in the matrix and formed needle-like mullite. The high temperature strengths of the composites were also investigated.  相似文献   

18.
In order to tailor the fiber–matrix interface of continuous silicon carbide fiber reinforced silicon carbide (SiCf/SiC) composites for improved fracture toughness, alternating pyrolytic carbon/silicon carbide (PyC/SiC) multilayer coatings were applied to the KD-I SiC fibers using chemical vapor deposition (CVD) method. Three dimensional (3D) KD-I SiCf/SiC composites reinforced by these coated fibers were fabricated using a precursor infiltration and pyrolysis (PIP) process. The interfacial characteristics were determined by the fiber push-out test and microstructural examination using scanning electron microscopy (SEM). The effect of interface coatings on composite mechanical properties was evaluated by single-edge notched beam (SENB) test and three-point bending test. The results indicate that the PyC/SiC multilayer coatings led to an optimum interfacial bonding between fibers and matrix and greatly improved the fracture toughness of the composites.  相似文献   

19.
In the present research, the effect of addition of (1 wt.% and 3 wt.%) alumina nanoparticles (Al2O3) to epoxy modified by poly(styrene-b-butadiene-b-styrene) (SBS) epoxidized triblock copolymer was studied. The microstructure of final hybrid composites was studied with atomic force microscopy (AFM). Composites showed homogeneously dispersed Al2O3 nanoparticles in the epoxy matrix containing polystyrene (PS) microphase separated nanodomains. Dynamic mechanical analyses (DMA), flexural and fracture toughness investigations were carried out. The glass transition temperature of epoxy matrix has been retained unchanged by the addition of Al2O3 nanoparticles. The nanostructured epoxy systems based on SBS epoxidized triblock copolymer and well-dispersed Al2O3 nanoparticles allowed an increase in fracture toughness maintaining the transparency and stiffness of neat epoxy.  相似文献   

20.
Abstract

The present study is concerned with effects of microstructural factors such as distribution and fraction of coarse carbides located along solidification cell boundaries and characteristics of tempered martensitic matrix on fracture properties of five high speed steel (HSS) rolls manufactured by a centrifugal casting method. In situ microfracture observation, fracture toughness measurement and fractographic observation were conducted on these rolls to clarify fracture mechanisms. The in situ observation results indicated that coarse carbides located along cell boundaries provided easy intercellular fracture sites under a low stress intensity factor level. In the rolls whose intercellular carbide fraction and matrix hardness were high, fracture easily occurred under a low stress intensity factor. On the contrary, in the rolls where a small amount of intercellular carbides was distributed on the relatively ductile matrix of lath tempered martensite, the fracture path was accompanied by a considerable amount of plastic deformation including shear band formation, thereby resulting in high fracture toughness. In order to obtain better microstructure, hardness and fracture toughness of the HSS rolls, the minimisation of intercellular carbides, the refinement of carbides and the improvement of the matrix characteristics by controlling alloying elements and heat treatment conditions were suggested.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号