首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 93 毫秒
1.
采用一步细乳液聚合法将荧光单体4-甲胺基-9-(2-烯丙基)-1,8-萘二甲酰亚胺(MANI)共价键结合进聚合物纳米粒子中.光谱特性研究证明了MANI已经成功结合进人纳米粒子中.更重要的是,因为MANI通过共价键的方式结合进聚合物纳米粒子中,可以有效避免产生染料泄漏现象.并且可以通过控制纳米粒子中MANI的含量,来获得...  相似文献   

2.
本文采用一步细乳液聚合法,以苯乙烯为可聚合单体,结合基于聚集诱导荧光增强(AIE)荧光染料(2-((4’-(二苯胺)-[1,1’-连二苯基]-4-基)(苯基)亚甲基)丙二腈,TPAPCN),成功制备AIE荧光聚合物纳米粒子。光谱研究表明TPAPCN具有优良的AIE性质。纳米粒子光谱学的研究表明,通过调控TPAPCN的用量,成功地获得了不同荧光亮度的AIE聚合物纳米粒子。该纳米粒子在生物、医学等领域具有潜在的应用价值。  相似文献   

3.
白瑞  刘定胜 《精细化工》2021,38(11):2227-2232
设计并制作了同轴毛细管阵列微反应器,以聚(9,9-二辛基芴-共-苯并噻二唑)(PFBT)为原料、四氢呋喃为溶剂、去离子水为反溶剂、聚苯乙烯-马来酸酐共聚物为稳定剂,采用纳米沉淀法制备了聚合物荧光纳米粒子.用动态光散射技术(DLS)对荧光聚合物纳米粒子的结构进行了表征.结果表明,同轴毛细管阵列微反应器中间层溶剂的存在改变了PFBT溶液与反溶剂的混合方式,克服了微流体注射纳米沉淀法中注射管口的产物沉淀堵塞问题.在PFBT质量浓度高达500 mg/L时,反应器仍可长时间持续运行.同时,聚合物纳米粒子的粒径可通过改变PFBT溶液质量浓度、溶剂和反溶剂的流量比等条件来精确调控.当PFBT溶液质量浓度为50 mg/L、去离子水与PFBT溶液流量比为750时,制备的聚合物纳米粒子尺寸可降至13 nm.该微反应器实现了聚合物纳米粒子的长时间连续可控制备.  相似文献   

4.
本文采用一步细乳液聚合法,将一种疏水性的红色荧光染料甲基丙烯酸尼罗红酯(NRME)引入聚合物纳米粒子中,成功制备了新型水分散性红色荧光聚合物纳米粒子。光谱研究表明NRME已经成功结合进入纳米粒子。通过控制NRME在纳米粒子中的含量,可以获得不同荧光强度的聚合物纳米粒子。这类新型荧光纳米粒子在生物医学等领域有着潜在的应用价值。  相似文献   

5.
采用反相微乳液法合成氨基功能化的CdTe-Fe_3O_4/SiO_2磁性荧光复合纳米粒子,通过去甲斑蝥酸钠(SNCID)的羧基与氨基化的CdTe-Fe_3O_4/SiO_2磁性荧光复合纳米粒子孔道表面的羟基形成氢键,制成磁性荧光聚合物载药微球。采用荧光分光光度计(FS)、扫描电镜(SEM)、紫外-可见分光光度计(UV-Vis)、傅里叶红外光谱仪(FT-IR)等方法对该聚合物载药微球的理化性质进行表征分析。结果显示磁性荧光聚合物载药微球为球状,具有良好的分散性和光致发光能力等优点,其载药量和包封率分别为21.49%和69.84%。磁性荧光复合纳米粒子可作为具有荧光性质的药物载体。  相似文献   

6.
共轭聚合物纳米粒子(CPNs)因其高荧光亮度、低毒性、表面易修饰的特性,近年来在生物材料和生物医药领域备受关注。本论文中我们设计、合成了一种新的pH值响应共轭聚合物(PFPA),并通过纳米沉淀方法制备了其纳米粒子。动态光散射实验表明PFPA纳米粒子在水中分散性较好,其粒径约为8nm。PFPA纳米粒子的最大吸收峰为379nm,其摩尔吸光系数为2.1×106 L·mol-1·cm-1;另外该纳米粒子的荧光最大发射峰为422nm,其荧光量子产率为35%。PFPA纳米粒子在汞灯(100瓦)照射下表现出较好的光稳定性,另外MTT实验表明其具有较低的细胞毒性。该纳米粒子具有pH响应的光学特性,并可以用于活细胞成像。PFPA纳米粒子在癌症诊断、药物与基因传递等方面具有潜在的应用价值。  相似文献   

7.
以自制的高固体分热固性丙烯酸树脂为基质,以醋酸镉、硫代乙酰胺等为原料,在丙酮和甲醇的水溶液中,一步法非常简便地制备了平均粒径为7nm的在聚合物基体中单分散的CdS纳米粒子.对CdS/聚丙烯酸酯复合材料,应用X-射线粉末衍射(XRD)、透射电镜(TEM)、紫外-可见光谱(UV-Vis)和荧光光谱(PL)进行了表征.研究结果表明,金属离子首先与聚合物的羧基络合,生成硫化物纳米微粒后,聚合物又包覆在纳米微粒的表面形成保护层.  相似文献   

8.
<正>201412034含二氧化硅-氟聚合物杂化纳米粒子的透明超疏水/半透明超双疏性涂层的制备[刊,英]/Lee,Seung Goo等//Langmuir.-2013,29(48).-15 05l~15 057介绍了一种通过喷涂二氧化硅-氟聚合物杂化纳米粒子(SFNs)制备透明超疏水涂层和半透明超双疏性涂层的简单方法,该方法不需对底材进行预处理或后处理。其中纳米粒子的使用获得了微尺度和纳米级的粗  相似文献   

9.
《化纤文摘》2012,(1):38-47
TQ340.6520121258静电纺制取含固体粒子的聚合物纳米纤维及其应用Barakat N.A.M.…;Chemical Engineering Journal(Amsterdam,Netherlands);2010,156(2),p.487(英)通常用聚合物溶液或者溶胶-凝胶通过静电纺技术生产纳米纤维。使用溶胶-凝胶时,应将金属前体物溶解于合适的溶剂中,必  相似文献   

10.
近年来,聚合物-纳米无机粒子复合微球相关的设计、制备、以及应用研究得到了科学界众多学者的广泛关注与探索。本文论述了单体聚合法制备聚合物-纳米无机粒子复合微球的研究近况,主要介绍了悬浮聚合、乳液聚合(微乳液聚合、Pickering乳液聚合、细乳液聚合、反相乳液聚合、无皂乳液聚合)、分散聚合及溶液聚合的制备方法。概述了聚合物-纳米无机粒子复合微球在生物医药、光电材料、保护涂层、催化等方面的应用,展望了聚合物-纳米无机粒子复合微球的发展趋势。  相似文献   

11.
We report a fluorescent dye TM by incorporating the tetraphenylethylene (TPE) and cholesterol components into perylene bisimides (PBI) derivative. Fluorescence emission spectrum shows that the dye has stable red emission and aggregation-induced emission (AIE) characteristics. The incorporation of cholesterol components triggers TM to show induced chirality through supramolecular self-assembly. The cRGD-functionalized nanoparticles were prepared by encapsulating fluorescent dyes with amphiphilic polymer matrix. The functionalized fluorescent organic nanoparticles exhibit excellent biocompatibility, large Stokes’ shift and good photostability, which make them effective fluorescent probes for targeting cancer cells with high fluorescence contrast.  相似文献   

12.
There is great interest in the use of fluorescent polymer nanoparticles as optical imaging agents. When designing and synthesising a fluorescent polymer nanoparticle imaging agent there is a large variety in both the particle formation and dye attachment strategies that can be pursued. In this mini‐review we detail this range of possibilities, illustrating with examples from the literature, and highlighting particular advantages in each case. © 2014 The Authors. Polymer International published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.  相似文献   

13.
We evaluated the performance of green fluorescent magnetic Fe3O4 nanoparticles (NPs) as gene carrier and location in pig kidney cells. When the mass ratio of NPs to green fluorescent protein plasmid DNA reached 1:16 or above, DNA molecules can be combined completely with NPs, which indicates that the NPs have good ability to bind negative DNA. Atomic force microscopy (AFM) experiments were carried out to investigate the binding mechanism between NPs and DNA. AFM images show that individual DNA strands come off of larger pieces of netlike agglomerations and several spherical nanoparticles are attached to each individual DNA strand and interact with each other. The pig kidney cells were labelled with membrane-specific red fluorescent dye 1,1-dioctadecyl-3,3,3,3-tetramethylindocarbocyanine perchlorate and nucleus-specific blue fluorescent dye 4,6-diamidino-2-phenylindole dihydrochloride. We found that green fluorescent nanoparticles can past the cell membrane and spread throughout the interior of the cell. The NPs seem to locate more frequently in the cytoplasm than in the nucleus.  相似文献   

14.
Monodisperse crosslinked core–shell micrometer‐sized microspheres bearing a brightly blue fluorescent dye, carbazole, and containing various functional groups in the shell layers were prepared by a two‐stage distillation–precipitation polymerization in acetonitrile in the absence of any stabilizer. Commercial divinylbenzene (DVB), containing 80 vol.% of DVB, was polymerized by distillation–precipitation in acetonitrile without any stabilizer using 2,2′‐azobisisobutyronitrile (AIBN) as the initiator for the first stage of polymerization which resulted in monodisperse polyDVB microspheres used as the core. Several functional monomers, including 2‐hydroxyethyl methacrylate and acrylonitrile together with N‐vinylcarbazole blue fluorescent comonomer, were incorporated into the shell layers with AIBN as initiator during the second stage of polymerization. The resultant core–shell polymer microspheres were characterized using scanning electron microscopy, Fourier transform infrared spectroscopy, UV‐visible spectroscopy and fluorescence spectroscopy. Copyright © 2006 Society of Chemical Industry  相似文献   

15.
A highly fluorescent fluorescein dye labeled star shaped random copolymer with precise energy distribution was synthesized using atom transfer radical polymerization. The arm‐first strategy was utilized to achieve star architecture of the polymer. Dye labeling was carried out by azide‐alkyne cycloaddition. Acrylic acid and fluorescein dye both contributed to achieve a pH response. The synthesized polymer showed an attractive pH‐ and solvent‐sensitive fluorescence owing to efficient energy transfer from one fluorescent center to another. © 2014 Society of Chemical Industry  相似文献   

16.
In this work, nanocomposites were obtained by the dispersion of niobium oxyhydroxide into a poly(3‐hydroxybutyrate) (PHB) matrix by different preparative methods. These methods led to changes in the polymer morphology and in their photocatalytic properties. Thermal and structural properties of the nanocomposites were investigated using thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and Fourier transform infrared spectroscopy (FTIR)–attenuated total reflection (ATR). Scanning electron microscopy images were analyzed in order to observe the different morphologies of nanocomposites as well as the distribution of niobium nanoparticles in the PHB matrix. The chemical interactions between the polymer and niobium nanoparticles were observed in the FTIR–ATR and thermal analyses. The results of TGA and DSC indicated an improvement in the thermal stability of the polymer and the action of inorganic nanoparticles as nucleating agents in the process of heterogeneous nucleation of PHB. The composites exhibited good catalytic activity for the removal of methylene blue dye from an aqueous medium (~90%) during a photocatalytic process. The different morphologies of PHB/niobium oxyhydroxide composites directly influenced the catalytic activity of the material due to the difference in the dispersion of nanoparticles. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45836.  相似文献   

17.
A new method for preparing magnetic iron oxide nanoparticles coated by organic dye-doped silica shell was developed in this article. Iron oxide nanoparticles were first coated with dye-impregnated silica shell by the hydrolysis of hexadecyltrimethoxysilane (HTMOS) which produced a hydrophobic core for the entrapment of organic dye molecules. Then, the particles were coated with a hydrophilic shell by the hydrolysis of tetraethylorthosilicate (TEOS), which enabled water dispersal of the resulting nanoparticles. The final product was characterized by X-ray diffraction, transmission electron microscopy, Fourier transform infrared spectroscopy, photoluminescence spectroscopy, and vibration sample magnetometer. All the characterization results proved the final samples possessed magnetic and fluorescent properties simultaneously. And this new multifunctional nanomaterial possessed high photostability and minimal dye leakage.  相似文献   

18.
A novel technique has been developed to study the buried polymer/substrate interfacial regions by localizing a fluorescent probe on the substrate surface. Epoxy functional multi‐layers of silane coupling agents were deposited on glass and doped with small amounts of a fluorescently labeled silane‐coupling agent (FLSCA). When the dye‐doped silane layers were immersed in an epoxy/amine cured resin, a blue shift in the emission maximum was measured after resin cure. Silane layers of varying thickness were tested. Thicker layers showed smaller fluorescence shifts during cure, suggesting incomplete resin penetration into these layers. The fluorescence sensitivity to the interfacial reaction was verified with external reflection Fourier Transform Infrared Spectroscopy (FTIR) of the silane layers immersed only in the amine hardener.  相似文献   

19.
Steady state fluorescence was used to study the interfaces of composites formed by silica nanoparticles and three polymers: poly(methylmethacrylate) (PMMA), polystyrene (PS), and low density polyethylene (LDPE). The fluorescent response from the pyrene‐1‐sulfonamide (PSA) was used to study changes appearing in its immediate surroundings. Molecular dynamics of the polymers was studied monitoring the fluorescent response from the PSA as a function of temperature. When the fluorophore was dispersed within the polymers, information from their bulk was obtained while, attaching the fluorophore to the surface of the silica nanoparticles, information from the interface was collected. In the case of the amorphous polymer matrices (PMMA and PS), the presence of silica nanoparticles exerts a small constrain effect by reducing the chain mobility. In the case of the semicrystalline thermoplastic polymer (LDPE) when nanoparticles are not present, only one clear relaxation assigned to the typical diffusion‐like motion of chain segments in the crystallites has been observed. However, when nanoparticles are within the polymer, three relaxations are clearly observed: one in the interlamellar amorphous phase and two due to diffusion‐like motion of chain segments in the crystallites under or without the influence of the nanoparticles, respectively. POLYM. COMPOS., 2011. © 2011 Society of Plastics Engineers  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号