首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
符号聚合近似表示法是提取时间序列特征的重要方式。然而,传统的符号聚合近似表示法存在平均化分段数、同等对待划分区间,以及无法准确反映非平稳序列的突变信息等多项缺陷。鉴于此,通过引入局部均值分解和改进小波熵的分段算法,建立了一种新的时序SAX模型。该模型的基本原理是采用局部均值分解技术对原始序列进行去噪处理,利用滑动窗口阈值法获取分段数,并使用SAX表示法进行符号表示,利用KNN分类器实现分类性能测试。基于这一改进模型,进行了实证检验,实验结果表明,该模型能够有效提取序列的信息特征,具有较高的拟合度,达到了降维的目的,更重要的是,提高了KNN分类算法在SAX表示法中分类的准确率。  相似文献   

2.
符号化表示是一种有效的时间序列降维技术,其相似性度量是诸多挖掘任务的基础。基于SAX(sym-bolic aggregate approximation)的距离MINDIST_PAA_iSAX不满足对称性,在时间序列挖掘中具有局限性,提出了对称的度量Sym_PAA_SAX,且下界于欧拉距离。在真实数据集和合成数据集上的实验说明下界紧密性较好,相似搜索错报率较低。  相似文献   

3.
基于统计特征的时序数据符号化算法   总被引:9,自引:0,他引:9  
为克服SAX(符号聚合近似)算法对时序信息描述不完整的缺陷,提出基于统计特征的时序数据符号化算法,与SAX不同的是,该算法将时序符号看作矢量,而各时序子段的均值和方差则分别作为描述其平均值及发散程度的分量.由于该算法能够比SAX提供更多的描述信息,因而在时序数据挖掘应用中能够获得比SAX更精确的结果.大量的实验也证实了它的出色表现.  相似文献   

4.
基于SAX方法的股票时间序列数据相似性度量方法研究   总被引:2,自引:0,他引:2  
特定数据集上高效的相似性度量方法是目前时间序列数据挖掘领域研究的重点内容之一。针对经过SAX方法降维后的股票数据在相似性度量中缺乏趋势变化的动态信息这一问题,本文提出了一种融合了点距离与模式距离优点的新型相似性度量函数——复合距离函数,并通过实证分析验证了该距离函数在相似性度量中的有效性,为揭示股票数据间相互依赖的规律以及时间序列相似性问题的进一步研究提供了新思路。  相似文献   

5.
针对SAX方法的某些缺陷,提出基于SAX[8]的VSB(矢量化符号)方法,通过引入最大值,最小值这二个极值分量,将原来的SAX符号转化为具有三个分量的符号矢量,其VSB符号值由各分量的加权和最终确定.由于VSB方法能够比SAX提供更多对时序数据的描述信息,因而在时序分析中能够获得比SAX更精确的结果.大量的实验也证实了它的出色表现.  相似文献   

6.
提出了一种时序符号化方法.根据数据集极值来确定最佳字符集及时序数据的划分基准,通过估算最大压缩比来指导降维,从而实现了与SAX同样的符号化时序转换和相同的距离计算方式.与SAX不同的是,该时序符号化方法可以有效防止极值信息的丢失,因而在一些与极值相关的时序分析中有出色的表现.  相似文献   

7.
在诸多时序数据分类算法中,有一类算法借助时序数据的局部特征对时序数据进行分类,它们取得了不错的分类结果,然而其时间复杂度以及分类精度依旧存在可见的提升空间.本文提出的微局部特征二分类算法,着眼于局部特征本身的性质,对局部特征集进行限制,进而改进现有的基于局部特征的分类算法.新算法通过理论分析支撑,将经典算法的局部特征集大幅缩小,进而显著提升了分类算法的时间性能.另一方面通过重定义局部特征的评价标准,新算法选出性质更为优良的局部特征,提升了分类精度.  相似文献   

8.
李海林  梁叶 《控制与决策》2017,32(3):451-458
针对传统符号聚合近似方法在特征表示时容易忽略时间序列局部形态特征的局限性,以及动态时间弯曲在度量上的优势,提出一种基于数值符号和形态特征的时间序列相似性度量方法.将时间序列进行符号和形态的特征表示后,提出动态时间弯曲与符号距离结合的时间序列距离度量方法,使所提方法能够较好地反映时间序列数据数值分布和形态特征.实验结果表明,所提出的方法在时间序列数据挖掘中能够得到较好的分类效果,具有一定的优越性.  相似文献   

9.
针对动态时间弯曲(DTW)算法在提高计算速度同时不能兼顾分类正确率的问题,提出了一种基于朴素粒计算思想的弹性粗粒度动态时间弯曲(CG-DTW)算法。首先,通过计算时序方差特征的方法来获取较优的时序粒度,用粒度特征代替原始序列;其次,再代入执行DTW算法,允许动态调整被比较时序粒间的弹性大小,从而获得相对最优的时序对应粒;最后,在对应最优粒的情况下计算DTW距离。同时引入下界函数的提前终止策略进一步提高CG-DTW算法效率。实验结果表明,所提算法要比经典算法运行速率提高21.4%左右,比降维策略算法正确率提高近32.3个百分点,尤其是长序列的分类,CG-DTW能够在保持正确率的情况下兼顾较高的运行效率。CG-DTW在实际应用中能适应不确定长序列分类。  相似文献   

10.
相似性查询是一种非常重要的数据挖掘应用。由于数据流具有无限、高速等特性,传统的查询算法不能直接应用于数据流。提出了一种基于小波滑动窗口的多数据流相似性查询算法。算法首先将滑动窗口划分成若干等宽基本窗口,然后对每个基本窗口内的数据进行小波分解与系数约简,从而形成小波摘要窗口。执行相似性查询时,直接基于小波摘要进行计算,而无需数据重构。由于利用了小波分解的线性处理优点,算法具有较低的时间复杂度。最后,基于实际数据对算法进行了实验,实验结果证明了算法的有效性。  相似文献   

11.
针对动态时间弯曲方法计算时间过长的问题,提出增量动态时间弯曲来度量较长时间序列之间的相似性。首先利用动态时间弯曲方法对历史时间序列数据进行相似性度量,得到相应的历史最优弯曲路径和路径中各元素的累积距离代价。其次,通过逆向弯曲度量方法完成当前序列数据 的相似性度量,结合历史数据信息找到与历史弯曲路径相交且度量时间序列距离为当前最小值的新路径,进而实现增量动态时间弯曲的相似性度量。该方法不仅具有良好的度量质量,还具有较高的时间效率。数值实验表明,对于大部分时间序列数据集,新方法的分类准确率和计算性能要优于经典动态时间弯曲。  相似文献   

12.
针对常用方法忽略变量相关性和局部形状特性问题,提出基于加权动态时间弯曲的多元时间序列相似性匹配方法(CPCA-SWDTW).首先,在原加权动态时间弯曲算法基础上,引入形态因子,提出基于形态特征的加权动态时间弯曲算法(SWDTW).然后,提取多元时间序列的主成分作为模式表示,消除变量间的相关性,同时将方差贡献率作为相应主成分的权重.在此基础上,运用SWDTW,度量多元时间序列间的相似度.最后,通过相似性搜索实验表明,CPCA-SWDTW具有较好的准确性和鲁棒性.敏感性分析说明CPCA-SWDTW在一定程度上受到权重函数参数的影响.  相似文献   

13.
从应用角度对时间序列数据挖掘中的关键技术一相似性度量一进行了研究。实现了对时间序列的分段线性表示,并将其用于当前主要的几种时间序列距离度量算法。通过将各距离度量算法用于股票收盘数据分析实验,得出实验数据。通过对实验结果的分析并结合各算法的原理,对各方法的适用情况和执行效率进行了分析及比较。通过分析可知,每种算法有自己的特点及适用情况。对于实际应用,应根据实际需求选择合适的距离度量算法。  相似文献   

14.
新型时间序列相似性度量方法研究   总被引:1,自引:0,他引:1  
摘要:基于时间序列符号化后的特点,创造性地提出了一种新型相似性度量方法——符号化的统计向量空间法(SAX[1] Statistical Vector Space,SSVS)。将这种度量方法用于S&P500指数的股票数据聚类实验,并与经典相似性度量方法比较,结果表明这种新的方法能够高效地从整体趋势的角度度量时间序列的相似性,有很好的实际意义和应用前景。  相似文献   

15.
在时间序列相似性的研究中,通常采用的欧氏距离及其变形无法对在时间轴上发生伸缩或弯曲的序列进行相似性度量,本文提出了一种基于分段极值DTW距离的时间序列相似性度量方法可以解决这一问题。在动态时间弯曲(DTW)距离的基础上,本文定义了序列的分段极值DTW距离,并阐述了其完整的算法实现。与传统的DTW距离相比,分段极值DTW距离在保证度量准确性的同时大大提高了相似性计算的效率。文中最后运用MATLAB作对比实验,并给出实验结果数据,验证了该度量方法的有效性与准确性。  相似文献   

16.
基于角点弯曲度的时间序列相似性搜索算法   总被引:2,自引:0,他引:2       下载免费PDF全文
张雪丽  牛强 《计算机工程》2011,37(15):37-39,54
针对基于点距离的时间序列相似性搜索算法鲁棒性较差的问题,提出一种面向形态的时间序列近似表示方法和相似性度量算法。算法不依赖于时间序列长度和领域知识。在充分利用时间序列时变特征的基础上,以角点为分界点,利用角点处的弯曲度提取时间序列的特征,近似表示时间序列。实验结果表明,该算法具有良好的平移和伸缩不变性及较好的鲁棒性,搜索能力更强。  相似文献   

17.
In this paper, a novel model is proposed to measure the similarity of multivariate time series by combining large margin nearest neighbor (LMNN) and dynamic time warping (DTW). Firstly we use a Mahalanobis distance-based DTW measure for multivariable time series, which considers the relations among variables through the Mahalanobis matrix. Secondly, the LMNN algorithm is applied to learn the Mahalanobis matrix by minimizing a renewed cost function. As the cost function is non-differentiable, the minimization problem is solved from a perspective of k-means by coordinate descent method. We empirically compare the proposed model with other techniques and demonstrate its convergence and superiority in similarity measure for multivariate time series.  相似文献   

18.
在时间序列相似性研究领域已经发展了多种方法用于时间序列的表示,以达到降低序列维度的目的.作为一种经典的时域-频域转换方法,离散余弦变换目前已经在图形图像处理等领域得到了广泛的应用.将此方法应用于时间序列的表示上,在变换后的数据上进行相似性查询等操作.实验表明,相对以前的方法,这种方法具有明显的性能提升.  相似文献   

19.
传统的基于相关反馈的时间序列相似性搜索是将正反馈和负反馈融合在一起创建新查询向量,这样并没有充分利用负反馈序列的价值,而且容易对初始查询向量进行过多的更改。本文提出一种基于反馈的时间序列相似搜索方法,将反馈的正相关和负相关序列分开处理,最终的相似序列不但要与正相关序列相似,还要尽量与负相关序列不相似。在UCR数据集上的实验结果表明,本文提出的相似搜索方法与传统的基于反馈的相似搜索方法相比,在某些数据集上可以提高查询的准确率以及查全率。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号