首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
The design, fabrication and packaging process of silicon resonators capable of the integration of LSI (Large Scale Integration) have been developed on the basis of packaging technology using an LTCC (Low Temperature Co-fired Ceramic) substrate. The structures of silicon resonators are defined by deep reactive ion etching (DRIE) on a silicon on insulator (SOI) wafer and then transferred onto the LTCC substrate and hermetically sealed by anodic bonding technique. The measured resonant frequency of a micromechanical bulk acoustic mode silicon resonator after packaging at 0.02 Pa is 20.24 MHz with a quality factor of 50,600.  相似文献   

2.
A new technology is presented here to fabricate three-dimensional micromachined metal structures. The microstructures are manufactured by electroplating in deep-etched silicon structures followed by a separation from their mold. Up to 140-μm-deep silicon structures with vertical sidewalls are realized by an anisotropic plasma etching process producing the mold for electroplating. An etching gas mixture of SF6s and CBrF3 is used to achieve both an anisotropic etching behavior by protective film formation of CF2 -radicals and high etching rates. The anisotropy is due to photoresist masking, which enhances the polymer formation. The vertical trenches are electroplated from the trench base filling the structures uniformly to the substrate surface. By avoiding overplating across the whole substrate the resulting structures are suitable for micromechanical devices. If needed, released microstructures from the silicon mold can be obtained by direct lift-off  相似文献   

3.
The paper introduces a processing scheme to produce freestanding micromechanical beams by bulk micromachining silicon substrates in aqueous KOH. The release of the structures is done by wet-chemical etching exclusively. Standard MOS process steps are used to generate two adjacent etch-stop regions of different depths. During the anisotropic etching of the substrate in a protective chuck, membranes of two different thicknesses are formed by the electrochemical etch-stop mechanism. A short time-controlled etch of these regions in KOH releases the final beam by removing the thinner membrane areas around it. A layer of thermal oxide with low stress supported by a thin film of copolymer will keep the etchant away from the frontside of the wafer. It can be removed easily by BHF subsequent to micromachining. Resonance measurements with a laser vibrometer were used to determine the mechanical behaviour of the created structures under varying gas pressure.  相似文献   

4.
介绍了一种新颖的微创手术式硅微机械加工(MISSM)技术,该技术充分利用(111)硅片的晶向分布和各向异性湿法腐蚀的特性。通过在单晶硅片表面制作一系列微型释放窗口来定义结构的轮廓及尺寸,实现在单晶硅片内部选择性可自停止腐蚀技术,制作出不同结构尺寸的腔体。同时,结合不同器件结构设计的需求,缝合微型释放窗口并进行后续工艺制作及最终可动结构释放。该技术采用微创手术式单硅片单面体硅工艺替代传统的表面微机械工艺,制作工艺简单,既具有单硅片单面加工的优势又便于与IC工艺兼容。文章详细讲述了微创手术式三维微机械结构的成型机理和工艺流程,并针对其关键技术进行了系统的分析,取得了令人满意的结果。  相似文献   

5.
We developed an advanced method for fabricating microfluidic structures comprising channels and inputs/outputs buried within a silicon wafer based on single level lithography. We etched trenches into a silicon substrate, covered these trenches with parylene-C, and selectively opened their bottoms using femtosecond laser photoablation, forming channels and inputs/outputs by isotropic etching of silicon by xenon difluoride vapors. We subsequently sealed the channels with a second parylene-C layer. Unlike in previously published works, this entire process is conducted at ambient temperature to allow for integration with complementary metal oxide semiconductor devices for smart readout electronics. We also demonstrated a method of chip cryo-cleaving with parylene presence that allows for monitoring of the process development. We also created an observation window for in situ visualization inside the opaque silicon substrate by forming a hole in the parylene layer at the silicon backside and with local silicon removal by xenon difluoride vapor etching. We verified the microfluidic chip performance by forming a segmented flow of a fluorescein solution in an oil stream. This proposed technique provides opportunities for forming simple microfluidic systems with buried channels at ambient temperature.  相似文献   

6.
The fabrication of microchannels using MEMS technology always attracted the attention of researchers and designers of microfluidic systems. Our group focused on realizing buried fluidic channels in silicon substrates involving deep reactive ion etching. To meet the demands of today’s complex microsystems, our aim was to create passive microfluidics in the bulk Si substrate well below the surface, while retaining planarity of the wafer. Therefore additional lithographic steps for e.g. integrating circuit elements are still possible on the chip surface. In this paper, a more economic process flow is applied which also contains a selective edge-masking method in order to eliminate under-etching phenomenon at the top of the trenches to be filled. The effect of Al protection on the subsequent etch steps is also discussed. Applying the proposed protection method, our group successfully fabricated sealed microchannels with excellent surface planarity above the filled trenches. Due to the concept, the integration of the technology in hollow silicon microprobes fabrication is now available.  相似文献   

7.
Flexible transducer arrays are desired to wrap around catheter tips for side-looking intravascular ultrasound imaging. We present a technique for constructing flexible capacitive micromachined ultrasonic transducer (CMUT) arrays by forming polymer-filled deep trenches in a silicon substrate. First, we etch deep trenches between the bottom electrodes of CMUT elements on a prime silicon wafer using deep reactive ion etching. Second, we fusion-bond a silicon-on-insulator (SOI) wafer to the prime silicon wafer. Once the silicon handle and buried oxide layers are removed from the back side of the SOI wafer, the remaining thin silicon device layer acts as a movable membrane and top electrode. Third, we fill the deep trenches with polydimethylsiloxane, and thin the wafer down from the back side. The 16 by 16 flexible 2-D arrays presented in this paper have a trench width that varies between 6 and 20 ; the trench depth is 150 ; the membrane thickness is 1.83 ; and the final substrate thickness is 150 . We demonstrate the flexibility of the substrate by wrapping it around a needle tip with a radius of 450 (less than catheter size of 3 French). Measurements in air validate the functionality of the arrays. The 250- by 250- transducer elements have a capacitance of 2.29 to 2.67 pF, and a resonant frequency of 5.0 to 4.3 MHz, for dc bias voltages ranging from 70 to 100 V.  相似文献   

8.
A new technological approach on thin flexible sensors is presented. As proof of concept, a thermoelectric flow sensor on a 10-mum-thick polyimide foil has been realized. The advantages of silicon as a thermoelectric material and the stability of low-pressure chemical vapor deposition (LPCVD)-silicon nitride as a protective coating are combined with the flexibility of polymer substrates. The thermoelectric flow sensor is fabricated on a standard silicon wafer for handling purposes. Only the functional layers that are embedded in 600 nm of LPCVD-silicon nitride are transferred onto a 10-mum-thick polyimide. The bulk silicon has been removed using deep reactive ion etching. Samples have been fabricated and tested, proving the potential of this new technological concept. The first characterization results show that the sensor layout has to be adapted to the properties of the polymer substrate.  相似文献   

9.
The utilization of a newly developed photosensitive polymeric coating, ProTEK PSB plays a significant role in realizing simple process steps in the fabrication of MEMS devices using bulk micromachining technology. The photosensitive coating which serves as an alternative to the conventional silicon nitride mask of bulk potassium hydroxide (KOH) etching in devising MEMS devices, particularly in suspended microcantilever structure, is reported in this study. Although the polymeric coating ProTEK PSB acts as an excellent outer protective layer from any pinhole issues, the coating’s lateral etching in the KOH solution is dominant, which results in an undercut problem. Therefore, few investigations have been carried out to identify the most suitable condition for the ProTEK PSB deposition on Si substrate. Initial investigation was done on the effect of Si surface modification on the stability of the ProTEK PSB in KOH etching. It was observed that the surface treatment may reduce the undercut ratio for a short period of KOH etching. However, for the extended hours, the surface treatment is not effective enough to improve the stability of the polymeric coating. Therefore, combinations of ProTEK PSB on three substrates were studied in order to obtain a minimum undercut to etch depth ratio of the polymeric coating in KOH bulk etching. The study showed that the combination of ProTEK PSB patterned on thermal oxide results in the most effective etching condition attributed by minimum undercut ratio. Further investigation was carried out on the effect of the KOH etching concentration on the stability of the ProTEK PSB coating over the long hours of bulk etching process. Three concentrations of KOH etchants, KOH 20 wt%, KOH 45 wt% and KOH with isopropyl alcohol (KOH + IPA) were investigated. The results showed that the stability of the polymeric coating was excellent in KOH 20 wt% concentration with a very minimal undercut ratio of 0.05–0.07. In conclusion, the utilization of the polymeric coating ProTEK PSB serves as an alternative etch mask in KOH wet etching which offers simpler and cheaper device fabrication in bulk micromachining technology.  相似文献   

10.
The current work reports on the realization of movable micromachining devices using self-aligned single-mask fabrication process. Only dry etching process utilizing inductively coupled plasma reactive ion etching was used to release 3D micro structures from single crystal silicon substrate. No wet etching process is required to release the structures as is the case with silicon on insulator (SOI) wafers. Also the developed process does not require an SOI substrate and accordingly dispensing with the application of a wet etching step, thus yielding uniform structures without stiction. The optimized process was applied to realize thermally actuated microgrippers. The article presents the development of the fabrication process and demonstrates the operation of the fabricated device. The optimized process provides an avenue for low cost fabrication of movable micromachining devices without the use of complicated wet etching steps typically associated with SOI substrates.  相似文献   

11.
This paper presents a simple method to produce microfluidic channels in soda-lime glasses with the aspect ratio >0.5 utilizing a modified wet etching protocol. A low-cost positive photoresist (PR) layer is used as the etching mask for the wet etching process. Prior to the PR and primer coating procedure, a UV activation process is adopted for enhancing the binding strength of the hexamethyldisilazane primer layer and the glass substrate, resulting in an better adhesion for the PR layer. A fast etching recipe is also developed by increasing the acidity and the temperature of the buffered oxide (BOE) etchant. Since the photoresist etching mask does not peel during the etching process shortly, the structure of the etching mask forms a barrier and results in a different diffusion rate for the etchant inside the etched trench structure. A slower etching rate for the glass is observed at the undercut region such that the proposed anisotropic etching pattern can be achieved. Results show that the etching rate of the modified glass etching process is as high as 7.7 μm/min which is much faster than that of pure BOE etchant (0.96 μm/min). Sealed microfluidic channel with the aspect ratio of around 0.62 is produced with the developed method. The method developed in the present study provides a rapid and efficient way to produce microfluidic channels with higher aspect ratio.  相似文献   

12.
Micro-fabrication combining stereo-lithography with reactive ion etching is proposed. Three-dimensional polymer structures smaller than 1 mm are fabricated on silicon wafer by He-Cd (325.0 nm) laser stereo-lithography. Using the polymer structure having a high-aspect ratio as resist for deep reactive ion etching, the microstructure is transferred to the silicon substrate with an etching ratio of 0.5. The proposed technique has been demonstrated by the fabrication of lens-like structures.  相似文献   

13.
A single-sided bulk silicon dissolved wafer process that has been used to fabricate several different micromechanical structures is described. It involves the simultaneous processing of a glass wafer and a silicon wafer, which are eventually bonded together electrostatically. The silicon wafer is then dissolved to leave heavily boron doped devices attached to the glass substrate. Overhanging features can be fabricated without additional masking steps. It is also possible to fabricate elements with thickness-to-width aspect ratios in excess of 10:1. Measurements of various kinds of laterally driven comb structures processed in this manner, some of which are intended for application in a scanning thermal profilometer, are described. They comprise shuttle masses supported by beams that are 160-360 μm long, 1-3 μm wide, and 3-10 μm thick. Some of the shuttles are mounted with probes that overhang the edge of the die by 250 μm. Resonant frequencies from 18 to 100 kHz and peak-to-peak displacements up to 18 μm have been measured  相似文献   

14.
论文基于普通的体硅工艺设计实现了一个单片集成式硅微惯性测量组合.通过对敏感表头的结构优化设计达到异构图形长和宽的较高一致度,从而有效降低刻蚀延迟效应(RIE Lag)对大面积结构深刻蚀造成的影响.所加工的样片在不到1cm2的硅片面积上同时包含了三个不同轴向的硅微加速度计和三个不同轴向的硅微陀螺,可对载体在笛卡尔坐标系内六个自由度上的运动分量进行测量.针对这六个片上惯性元器件,分别设计了相应的接口电路并进行了测试.测试表明其中的陀螺可达到1 deg/s左右的精度,加速度计有33 mV/gn的标度因子.论文研究表明这种单片集成式硅微惯性测量组合的实现方法工艺简单,可有效降低惯性测量组合的体积,同时具有进一步提高精度的潜力.  相似文献   

15.
Fabricating electrostatic micro actuator, such as comb-drive actuator, is one of the demanding areas of the MEMS technology because of the promising applications in modern engineering, such as, micro-switches, attenuators, filters, micro-lenses, optical waveguide couplers, modulation, interferometer, dynamic focus mirror, and chopper. For the fabrication, most of the cases silicon monocrystalline wafers are used through complex process. To etch the silicon substrates, researchers often use deep reactive-ion etching or anisotropic wet etching procedure which are time consuming and unsuitable for batch fabrication process. Again, resent research shows that comb-drive actuators need comparatively high voltage for actuation. In solving these problems, the study presents a copper based electrostatic micro actuator with low actuation voltage. Using wire electrical discharge machine (WEDM), the actuator is fabricated where a light weight flexible spring model is introduced. Capacitor design model is applied to present a voltage controlling electronic circuit using Arduino micro controller unit. The experimental result shows that the actuator is able to produce 1.38 mN force for 15 V DC. The experiment also proves that coper based actuator design using WEDM technology is much easier for batch processing and could provide the advantages in rapid prototyping.  相似文献   

16.
This paper presents a new process for releasing micromechanical structures in surface micromachining with polysilicon support and LPCVD (low pressure chemical vapor deposition) Si3N4 embedded mask for one polysilicon layer process, which can be adjusted to be suitable for the structure stiffness by changing the distance between two supports. The results of test structures show that this process may be a good technology to eliminate the sticking of microstructures to the substrate during the wafer drying after the sacrificial etching process.  相似文献   

17.
Low-temperature wafer-level transfer bonding   总被引:2,自引:0,他引:2  
In this paper, we present a new wafer-level transfer bonding technology. The technology can be used to transfer devices or films from one substrate wafer (sacrificial device wafer) to another substrate wafer (target wafer). The transfer bonding technology includes only low-temperature processes; thus, it is compatible with integrated circuits. The process flow consists of low-temperature adhesive bonding followed by sacrificially thinning of the device wafer. The transferred devices/films can be electrically interconnected to the target wafer (e.g., a CMOS wafer) if required. We present three example devices for which we have used the transfer bonding technology. The examples include two polycrystalline silicon structures and a test device for temperature coefficient of resistance measurements of thin-film materials. One of the main advantages of the new transfer bonding technology is that transducers and integrated circuits can be independently processed and optimized on different wafers before integrating the transducers on the integrated circuit wafer. Thus, the transducers can be made of, e.g., monocrystalline silicon or other high-temperature annealed, high-performance materials. Wafer-level transfer bonding can be a competitive alternative to flip-chip bonding, especially for thin-film devices with small feature sizes and when small electrical interconnections (<3×3 μm2) between the devices and the target wafer are required  相似文献   

18.
介绍一种硅纳米线制作方法.在SOI顶层硅上制作硅纳米梁,通过离子注入形成pnp结构,利用新发现的没有特殊光照时BOE溶液腐蚀pn结n型区域现象,结合BOE溶液氧化硅腐蚀,实现硅纳米线制作.制作完全采用传统MEMS工艺,具有工艺简单,成本低,可控,可靠性好,可批量制作等优点.利用该方法制作出了厚50 nm,宽100 nm的单晶硅纳米线,制作的纳米线可用于一维纳米结构电学性能研究、谐振器研究等.  相似文献   

19.
A method of depositing polydimethylsiloxane (PDMS) onto microfabricated surfaces by spray coating is presented. Low-viscosity PDMS combinations suitable for spraying are developed by mixing Dow Corning Sylgard 184 with 200 Fluid 20 cSt, and also by dilution with hexane. Spray coating is carried out on rotating substrates using blank Si wafers. Film quality is characterised with mechanical and optical profilometry and process parameters are optimised to yield micron-scale thickness with low surface roughness. High gas pressures and substrate motion improve the quality of sprayed films. The coating process is extended to microstructures formed by lithography and etching of silicon, and it is found that heating to accelerate cross-linking improves conformal coverage. The material can be used in many applications requiring spin coated or cast PDMS. Spray coated PDMS can be used as an adhesion layer and construction of microfluidic channels is demonstrated by plasma activated bonding. The coatings can also adsorb alkanethiols and micro contact printing is demonstrated using embossed, spray coated PDMS and using spray coated etched stamps.  相似文献   

20.
A high-aspect ratio, single-crystal line silicon x-axis microgyroscope is fabricated using the extended sacrificial bulk micromachining (SBM) process. The x-axis microgyroscope in this paper uses vertically offset combs to resonate the proof mass in the vertical plane, and lateral combs to sense the Coriolis force in the horizontal plane. This requires fabricating vertically and horizontally moving structures for actuation and sensing, respectively, which is very difficult to achieve in single-crystalline silicon. However, single-crystalline silicon high-aspect ratio structures are preferred for high performance. The extended SRN/I process is a two-mask process, but all structural parts and combs are defined in one mask level. Thus, there is no misalignment in any structural parts or comb fingers. In this extended SBM process, all vertical dimensions of the structure, including the comb height, vertical comb offset and sacrificial gap, can be defined arbitrarily (up to a few tens of micrometers). For electrical isolation, silicon-on-insulator (SOI) wafers are used, but the inherent footing phenomenon in the SOI deep etching is eliminated and smooth structural shapes are obtained, because the SBM process is used. In the fabricated x-axis microgyroscope, the lower combs used to vibrate the proof mass are vertically offset 12 /spl mu/m from the upper combs. The fabricated x-axis microgyroscope can resolve 0.1 deg/s angular rate, and the measured bandwidth is 100 Hz. The reported work represents the first x-axis single-crystalline silicon microgyroscope fabricated using only one wafer without wafer bonding. We have previously reported several versions of z-axis microgyroscopes and x-, y-, and z-axis accelerometers, using the SBM process. The results or this paper allow integrating x-, y-, and z-axis microgyroscopes as well as x-, y-, and z-axis microaccelerometers in one wafer, using the same mask and the same process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号