首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到3条相似文献,搜索用时 0 毫秒
1.
2.
采用微机控制电子万能实验机和分离式霍普金森压杆(SHPB)对石墨烯增强的铝基复合材料和碳化硅增强的铝基复合材料进行准静态压缩实验和动态冲击实验,研究石墨烯增强铝基复合材料在不同应变率下的冲击力学性能,采用SEM扫描电镜研究石墨烯增强的铝基复合材料和碳化硅增强的铝基复合材料的形貌特征。结果表明:在各个应变率载荷下,添加石墨烯和添加碳化硅都增强了铝合金的屈服强度,其中,添加石墨烯对铝合金的屈服强度提升更加明显,但不影响材料的应变硬化率;相较于在材料中添加碳化硅,添加石墨烯弱化了材料的应变率效应,在高应变率条件下,添加石墨烯降低了材料的强度极限;选取部分实验数据,拟合确定了添加石墨烯和添加碳化硅两种复合材料的J-C和Z-A本构方程的参数,并比较了两种本构模型的预测能力,对于本工作所研究的复合材料,J-C模型的预测能力更好。  相似文献   

3.
The in situ measurement of phase stress under tensile deformation on an A6061 alloy reinforced with SiC whiskers (Al/SiCw MMC: Metal Matrix Composite) was performed using the X-ray diffraction technique. In order to raise a preciseness of measurements, we applied a profile fitting technique to separate the nearby located diffraction peak. Tensile deformation on elastic to plastic range was applied by four points bending device and discussed internal stress behavior in the short ceramic fiber reinforced MMC. Phase stress in Al matrix was increased linearly up to 2800×10−6 in strain and then saturated immediately. On the other hand phase stress in SiC whiskers shows an unstable stress behavior. It was decreased at first because of the Poisson's effect from Al matrix but reversed over 500×10−6 applied strain. The measured phase stress behavior in elastic region agreed with the calculations using micromechanics based on Eshelby/Mori–Tanaka model except for this unstable internal stress region. The macro stress behavior in plastic region was extremely small than that of the tensile test results. It supposed that the mechanism of strength is not so much the fiber reinforcing as the dispersion strengthening like the Orowan mechanism. Regarding the fatigue property, ΔKth of the Al/SiC MMC, this was lower than that of the A6061 alloy. On the Al/SiCw MMC specimen, many micro void formations were observed around the fatigue crack tip even under the ΔKth of A6061. It was considered that these were caused by the high gradient of residual stress on composite process and the unstable stress behavior in low ΔK region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号