首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the present study, material characteristics, such as inelastic constitutive behaviour and debonding failure, of an adhesively bonded joint (ABJ) at cryogenic temperature have been evaluated using a computational approach. The modified Bodner-Partom model (BP model) has been introduced to describe the material nonlinearities of ABJ. The Gurson-Tvergaard model (GT model) has also been implemented into the constitutive model in order to analyse the phenomenon of debonding failure. An ABAQUS user-defined subroutine UMAT is developed using a damage-coupled constitutive model based on an implicit formulation. The numerical results are compared with a series of lap shear tests of ABJ at cryogenic temperature in order to verify the proposed method.  相似文献   

2.
A cohesive zone model (CZM) has been used in conjunction with both elastic and elasto– plastic continuum behaviour to predict the response of a mixed mode flexure and three different lap shear joints, all manufactured with the same adhesive. It was found that, for a specific dissipated CZM energy (Γ0) there was a range of CZM tripping tractions (σu) that gave a fairly constant failure load. A value of σu below this range gave rise to global damage throughout the bonded region before any crack propagation initiated. A value above this range gave rise to a discontinuous process zone, which resulted in failure loads that were strongly dependent on σu. A discontinuous process zone gives rise to mesh dependent results. The CZM parameters used in the predictions were determined from the experimental fracture mechanics specimen test data. When damage initiated, a deviation from the linear load–displacement curve was observed. The value for σ uwas determined by identifying the magnitude that gave rise to the experimentally observed deviation. The CZM energy (Γ 0) was then obtained by correlating the simulated load-crack length response with corresponding experimental data. The R-curve behaviour seen with increasing crack length was successfully simulated when adhesive plasticity was included in the constitutive model of the adhesive layer. This was also seen to enhance the prediction of the lap shear specimens. Excellent correlation was found between the experimental and predicted joint strengths.  相似文献   

3.
Tubular adhesively bonded joints are widely used in many industries such as the oil-and-gas, aerospace and automotive. Such joints are often used to mate dissimilar materials. Composite materials, because of their superior specific strength and stiffness and high resistance to corrosion, have also been widely used to form tubular components. When composites are mated to other materials (such as metals) by adhesives, the stress concentration in the adhesive layer becomes even more exasperated due to the mismatch in the mechanical properties of the mating adherends, thus posing further challenges. Moreover, the presence of a delamination in the composite adherend can significantly influence the stress distribution within the adhesive layer; therefore, the assessment of the adhesive layer stresses in the presence of a delamination is of importance, thus forms the main objective of the present work.  相似文献   

4.
A methodology is presented for the failure prediction of the composite single lap bonded joints considering both the composite adherend and the bondline failures. An elastic-perfectly plastic model of the adhesive and a delamination failure criterion were used in the methodology. The failure predictions using the finite element analysis and the proposed methodology were performed. The failure prediction results such as failure mode and strength showed very good agreements with the test results for the joint specimens with various bonding methods and parameters. Based on the numerical investigation, the optimal joint strength condition was found and a new joint strength improvement technique was suggested. The suggested technique was verified to have a significant effect on the joint strength improvement.  相似文献   

5.
The role of a sinusoid interface shape on the load bearing capacity and fatigue life of adhesively bonded single lap joints (SLJs) was investigated numerically and experimentally. Aluminium adherends with wavy interfaces were tested under both quasi‐static and fatigue loading conditions. The experimental results showed that the non‐flat SLJs were indeed much stronger than the conventional flat joints. In order to fully demonstrate the advantage of the non‐flat sinusoid SLJ over the conventional SLJ, comparative fatigue tests with different loading levels were performed to determine the durability performance of the SLJs with non‐flat interfaces. The experimental results revealed that the non‐flat SLJ had considerably higher fatigue life than the conventional lap joint.  相似文献   

6.
In this study, mechanical properties of adhesively bonded single-lap joint (SLJ) geometry with different configurations of lower and upper adherends under tensile loading were investigated experimentally and numerically. The adherends were AA2024-T3 aluminum and carbon/epoxy composite with 16 laminates while, the adhesive was a two-part liquid, structural adhesive DP 460. In experimental studies, four different types of single-lap joints were produced and used namely; composite–composite (Type-I) with lower and upper adherends of the same thicknesses and four different stacking sequences, composite–aluminum (Type-II) with lower and upper adherends of the same thicknesses and four different stacking sequences, composite–aluminum (Type-III) with lower adherend (composite) of the same thickness but upper adherend of three different thicknesses, aluminum–aluminum (Type-IV) with lower adherend of the same thickness but upper adherend of three different thicknesses, composite–composite (Type-V) with [0]16 stacking sequences and three different overlap length, aluminum–aluminum (Type-VI) with three different overlap length. In the numerical analysis, the composite adherends were assumed to behave as linearly elastic materials while the adhesive layer and aluminum adherend were assumed to be nonlinear. The results obtained from experimental and numerical analyses showed that composite adherends with different fiber orientation sequence, different adherend thicknesses and overlap length affected the failure load of the joint and stress distributions in the SLJ.  相似文献   

7.
In this study three-dimensional elastic stress state of an adhesively bonded single lap joint with functionally graded adherends in tension was investigated. The adherends compose of a functionally gradient layer between a pure ceramic (Al2O3) layer and a pure metal (Ni) layer. Stress concentrations are observed along the free edges of the adhesive layer and through the corresponding zones in the upper and lower adherends. The adhesive layer experiences stress concentrations along the left and right free edges in the horizontal plane, and the normal stresses and the shear stress σxy are critical. Whereas the middle overlap region has a uniform low stress distribution the zones in the upper adherend corresponding to the left free edge of the adhesive layer and the zones in the lower adherend corresponding to the right free edge of the adhesive layer are subjected to higher stresses. The normal stress σxx among the normal stresses and the shear stress σxy among the shear stresses are dominant in both upper and lower adherends. The normal stress σxx changes uniformly from compression in the ceramic layer to tension in the metal layer through the upper plate-thickness and from tension in the ceramic layer to compression in the metal layer through the lower plate-thickness. In the adhesive layer, the normal stress σyy becomes peak at the left free edge of the upper adherend–adhesive interface and at the right free edge of the lower adherend–adhesive interface and then decreases uniformly across the adhesive layer towards the other adherend–adhesive interface. The functionally gradient region across the adherend thickness was modelled using the layers with the mechanical properties calculated based on the power law. However, a layer number larger than 20 has a minor effect on the through-thickness profiles and magnitudes of von Mises and normal stresses in both the adherends and the adhesive. In addition, increasing the ceramic phase in the material composition (compositional gradient exponent n) of the functionally gradient region does not affect the through-thickness profiles of von Mises and normal stresses in the adherends and adhesive whereas their magnitudes in the ceramic rich layer of both adherends and along the adherend–adhesive interfaces increase considerably. On the contrary, the layer number and compositional gradient exponent have an evident effect on the through-thickness profiles and magnitudes of the critical stress components in the adherends and adhesive layer of the functionally graded adhesively bonded joints.  相似文献   

8.
This paper focuses specifically on the high velocity transverse impact of composite joints by hailstones. Impact tests with ice spheres onto composite lap joint specimens were conducted to determine the failure threshold energy describing damage initiation, and to investigate the modes of damage. The damage areas imaged by ultrasonic scanning were quantitatively measured and the specimens were also sectioned and observed with optical microscopy to determine the exact location of damage. The damage area versus impact kinetic energy was found to increase dramatically for impacts beyond the failure threshold. Delamination of the composite originated at the bond overlap termination facing away from the impact side. The damage usually occurred at specific ply locations and a transition of the delamination to other ply locations was also observed. Numerical simulation of the impact was conducted and the results show that the plies where delaminations were observed to occur have the highest peel and shear stresses.  相似文献   

9.
Adhesively bonded joints are increasingly being used in joining various structural components. Adequate understanding of the behaviour of adhesively bonded joints is necessary to ensure efficiency, safety and reliability of such joints. While several joint configurations, such as the single- and double-lap joints have received considerable consideration, the single-strap joint configuration has received little attention, partly because earlier studies have shown it to be the least efficient.

One of the objectives of this paper is to demonstrate that strap joints can be as efficient as lap joints, as long as they are properly designed. This will be done through a detailed analytical investigation into influence of the parameters that govern peak stresses in the adhesive. The next objective is to produce simple equations by which the design of strap joint could be facilitated in an effective manner. For this, the developed analytical expressions are simplified and shown to provide accurate results. The derived solutions provide better insight into understanding the parameters that most influence the edge forces.  相似文献   


10.
为了研究持续高温环境对车用新材料粘接结构力学性能的影响,加工了铝合金-铝合金(Al-Al)和玄武岩纤维增强树脂复合材料-铝合金(BFRP-Al)单搭接接头,在高温(80℃)环境下进行了0天(未老化)、5天、10天、15天的老化实验,并对胶粘剂和BFRP复合材料进行了DSC和FTIR测试,分析高温老化后胶粘剂、BFRP复合材料的玻璃化转变温度(Tg)和化学成分变化,通过准静态拉伸测试获得老化后接头的失效载荷,并对其失效模式进行分析。研究结果表明:高温环境下,胶粘剂会发生后固化及氧化反应,BFRP复合材料发生热分解及氧化反应;Al-Al接头的失效载荷随老化周期的增加而不断增大,老化前后的失效模式均为内聚失效,其性能变化主要由胶粘剂决定;BFRP-Al接头的失效载荷先增加后减小,不同老化周期的接头均发生内聚和撕裂的混合失效,其性能变化由胶粘剂和BFRP复合材料共同作用决定,且随着老化周期的增加,BFRP复合材料撕裂面积不断增大,BFRP-Al接头的失效模式越来越倾向于玄武岩纤维/树脂界面的破坏,BFRP复合材料老化对接头失效载荷的影响越来越显著。   相似文献   

11.
Three-dimensional non-linear finite ele- ment analyses have been carried out to evaluate the out-of-plane stresses in the adhesive layer existing between the lap and the strap adherends of the Lap Shear Joint (LSJ) in laminated FRP composites for varied delamination lengths. The delaminations are presumed to be pre-embedded in the thin resin rich layer existing between the first and second plies of the strap adherend. Sublaminate technique has been used to model the LSJ with the delamination. Contact finite element analyses have been performed in order to avoid interpenetration of delaminated surfaces. The effects of varied delamination lengths on the peel and interlaminar shear stresses and the individual modes of Energy Release Rate (ERR) in the delamination zones are highlighted in this paper. It is seen that three-dimensional effects exist near the free edges of the overlap end of the joint. The delamination propagation significantly affects the stress distributions in the adhesive layer existing between the lap and the strap adherends of the LSJ. The variations of interlaminar stresses and ERRs on both the delamination fronts are found to be significantly different and thus, indicate that the propagation of delamination does not occur at same rate at the two delamination fronts. This may throw some light to the evaluation of structural integrity of the LSJ in the presence of pre-embedded delaminations.  相似文献   

12.
Abstract

In this study, the shear strength of a nanocomposite adhesive was experimentally and numerically investigated under ambient temperature and thermal cycling conditions. This study used the Thick Adherend Shear Test method, which is commonly used to determine the shear stress–displacement of adhesives. Shear–displacement was determined by an extensometer to accurately compare results obtained from the Thick Adherend Shear Test results for joints with numerical analyses. As a result, when the shear failure load obtained from experiments was examined, the nanocomposite adhesives, obtained by adding a nanostructure into the adhesive, improved both the ambient temperature and thermal cycling performances of the joints.  相似文献   

13.
Analytical solutions for adhesively bonded balanced composite and metallic joints are presented in this paper. The classical laminate plate theory and adhesive interface constitutive model are employed for this deduction. Both theoretical and numerical (finite element analysis) studies of the balanced joints are conducted to reveal the adhesive peel and shear stresses. The methodology can be extended to the application of various joint configurations, such as single-lap and single-strap joints to name a few. The methodology was used to evaluate stresses in several balanced adhesively bonded metallic and composite joints subjected to the tensile, moment and transverse shear loadings. The results showed good agreements with those obtained through FEM.  相似文献   

14.
The behaviour of the adhesive bonded joints due to the imposed eccentric loading generates a very complex distribution of the stress in the structure. Good adhesion between substrate and adhesive ensures a successful and lasting assembly. In this study the finite element method is used to analyze the behaviour of a bonded lap joint of dissimilar materials. The effects of the mechanical properties of the joints on the shear stress variation with and without presence of a circular notch are investigated. The results show that the maximum shear stresses are located at a distance of about 18% that of the lap length whatever the type of material used. In addition, the stress intensity factor is amplified by the presence of the negative effect of disband whose increase is linearly proportional to the square of the stress intensity factor. It reached its maximum value for a crack length equal to two-fifths of the notch radius.  相似文献   

15.
The main objective of the present work is to improve the performance of bonded joints in carbon fiber composite structures through introducing Multi-Walled Carbon Nanotubes (MWCNTs) into Epocast 50-A1/946 epoxy, which was primarily developed for joining and repairing of composite aircraft structures. Results from tension characterizations of structural adhesive joints (SAJs) with different scarf angles (5–45°) showed improvement up to 40% compared to neat epoxy (NE)–SAJs. Special attention was considered to investigate the performance of SAJs with 5° scarf angle under different environments. The tensile strength and stiffness of both NE-SAJs and MWCNT/E-SAJs were dramatically decreased at elevated temperature. Water absorption showed a marginal drop of about 2.0% in the tensile strength of the moist SAJs compared to the dry one. Cracks initiation and propagation were detected effectively using instrumented-SAJs with eight strain gauges. The experimental results agree well with the predicted using three-dimensional finite element analysis model.  相似文献   

16.
Most adhesively bonded joints have stress singularity points at the corners of the adhesive/adherend interface. Recently, stress singularity parameters, i.e. the intensity of stress singularity, K, and the order of stress singularity, λ, have been used to evaluate the strength of adhesively bonded joints. However, in many cases, stress singularity fields of adhesive joints cannot be formulated strictly by using constant values of K and λ. To apply these parameters to evaluate the strength of an adhesive joint, it is necessary to determine a key stress component and characteristic range for calculating the apparent singularity parameters Kapp and λapp. In this study, the endurance limits of adhesively bonded single lap, cracked single lap and single step double lap joints are evaluated using the stress singularity parameters. The results indicate that fatigue failure criterion for these joints can be obtained by using the apparent singularity parameters Kapp and λapp which are calculated by the least square method for the maximum principal stress distributions in the range from 0.05 to 0.5 mm from the singularity point.  相似文献   

17.
Due to their reliability and ease of assembly, both the adhesively bonded and the mechanical joints are commonly used in different fields of modern industrial design and manufacturing, to joint composite materials or composites with metals.As it is well known, adhesively bonded joints are characterized by high stiffness and good fatigue life, although delamination phenomena localized near the free edges may limit their use, especially for applications where corrosive environments and/or moisture can lead to premature failure of the bonding. In these cases, a possible alternative is given by the well-known mechanical joints. On the contrary, these last joints (bolted, riveted) require a preliminary drilling of the elements to be joined, that may cause localized material damage and stress concentration, especially for anisotropic laminates characterized by high stress concentration factors and easy drilling damaging, with significant decrease of the load-carrying capacity of the joined elements. In order to exploit the advantages of the bonded joints and those of the mechanical joints, both industrial manufacturing and research activity have been focused recently on the so called hybrid joints, obtained by the superposition of a mechanical joint to a simple adhesively bonded joint.In order to give a contribution to the knowledge of the mechanical behavior of hybrid bonded/riveted joints, in the present work a numerical–experimental study of bonded/riveted double-lap joints between aluminum and carbon fiber reinforced polymer (CFRP) laminates, has been carried out. It has permitted to highlight both the static and the fatigue performance of such joints obtained by using aluminum and steel rivets, as well as to known the particular damage mechanisms related also to the premature localized delamination of the CFRP laminate due to the riveting process.  相似文献   

18.
The strains at which buckling and debond growth occur in adhesively bonded composite flanges containing an initial debond were experimentally measured. Test parameters including initial debond geometry, flange material stiffness, and the adhesive critical strain energy release rate (Gc) were investigated. Debond growth was found to be strongly dependent on initial debond length but weakly dependent on flange width; i.e., debonding resistance did not increase in direct proportion with the bonded overlap dimension. Flanges having higher bending stiffness exhibited significantly lower debonding strain. Finally, the effect of Gc was evaluated at three levels by controlling the adhesive cure temperature and bondline thickness. Lower values of Gc (207 and 552 J/m2) allowed debond growth to occur while at the highest value of Gc (1500 J/m2), alternate failure modes occurred prior to debond growth. Ultrasonic C-scans revealed that debond growth occurred along a curved front, as dictated by the post-buckling deformation of the flanges.  相似文献   

19.
A series of experimental investigations of multilaminated joints adhesively bonded by epoxy/polyurethane (PU) glue were conducted in order to examine the delamination failure characteristics under in-plane shear loading at low temperatures. In order to observe these phenomena, a series of lap-shear tests were carried out at various low temperatures (20 °C, −110 °C and −163 °C) and various adhesion areas (15 mm × 50 mm, 30 mm × 50 mm, 50 mm × 50 mm, 75 mm × 50 mm and 100 mm × 50 mm). The test results were used to investigate the delamination and material characteristics, as well as the material properties, e.g., ultimate shear stress and shear elongation. Furthermore, the dependencies of the characteristics of multilaminated adhesively bonded joints (MABJs) on temperature and adhesion area was analyzed using the stress–strain relationship, and closed form formulas that are functions of the dependent parameters are proposed.  相似文献   

20.
The adhesively-bonded joints considered in this investigation include single-lap joint and double-lap joint. A simplified one-dimensional model based on the classical elasticity theory is presented. The shear deformation in the adhesive is assumed constant across the adhesive thickness. The analytical solutions of shear stress in the adhesive and longitudinal stress in the adherend are obtained and compared with the numerical solutions determined by the two-dimensional finite element method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号