首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper deals with the problem of robust H filtering for uncertain stochastic systems. The system under consideration is subject to time‐varying norm‐bounded parameter uncertainties and unknown time delays in both the state and measurement equations. The problem we address is the design of a stable filter that ensures the robust stochastic stability and a prescribed H performance level for the filtering error system irrespective of all admissible uncertainties and time delays. A suffient condition for the solvability of this problem is proposed and a linear matrix inequality approach is developed for the design of the robust H filters. An illustrative example is provided to demonstrate the effctiveness of the proposed approach.  相似文献   

2.
In this paper, the robust delay‐dependent H control for a class of uncertain systems with time‐varying delay is considered. An improved state feedback H control is proposed to minimize the H‐norm bound via the LMI optimization approach. Based on the proposed result, delay‐dependent criteria are obtained without using the model transformation technique or bounded inequalities on cross product terms. The linear matrix inequality (LMI) optimization approach is used to design the robust H state feedback control. Some numerical examples are given to illustrate the effectiveness of the approach.  相似文献   

3.
In this paper, the H control problem is investigated for a general class of discrete‐time nonlinear stochastic systems with state‐, control‐, and disturbance‐dependent noises (also called (x, u, v)‐dependent noises). In the system under study, the system state, the control input, and the disturbance input are all coupled with white noises, and this gives rise to considerable difficulties in the stability and H performance analysis. By using the inequality techniques, a sufficient condition is established for the existence of the desired controller such that the closed‐loop system is mean‐square asymptotically stable and also satisfies H performance constraint for all nonzero exogenous disturbances under the zero‐initial condition. The completing square technique is used to design the H controller with hope to reduce the resulting conservatism, and a special algebraic identity is employed to deal with the cross‐terms induced by (x, u, v)‐dependent noises. Several corollaries with simplified conditions are presented to facilitate the controller design. The effectiveness of the developed methods is demonstrated by two numerical examples with one concerning the multiplier‐accelerator macroeconomic system.  相似文献   

4.
In this paper, the exponential H filter design problem is investigated for a general class of stochastic time‐varying delay system with Markovian jumping parameters. The stochastic uncertainties appear in both the dynamic and the measurement equations and the state delay is assumed to be time‐varying. Attention is focused on the design of mean‐square exponentially stable and Markovian jump filter such that the filtering error systems are mean‐square exponentially stable and the estimation error satisfies a given H performance. By introducing some slack matrix variables, delay‐dependent sufficient conditions for the solvability of the above problem are presented in terms of linear matrix inequalities (LMIs). In addition, the decay rate can be a given positive value without any other constraints. When the proposed LMIs are feasible, an explicit expression of the desired H filter can be given. A numerical example is provided to illustrate the effectiveness of the proposed design approach. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

5.
This paper investigates the H observer design problem for a class of nonlinear discrete‐time singular systems with time‐varying delays and disturbance inputs. The nonlinear systems can be rectangular and the nonlinearities satisfy the one‐sided Lipschitz condition and quadratically inner‐bounded condition, which are more general than the traditional Lipschitz condition. By appropriately dealing with these two conditions and applying several important inequalities, a linear matrix inequality–based approach for the nonlinear observer design is proposed. The resulting nonlinear H observer guarantees asymptotic stability of the estimation error dynamics with a prescribed performance γ. The synthesis condition of H observer design for nonlinear discrete‐time singular systems without time delays is also presented. The design is first addressed for one‐sided Lipschitz discrete‐time singular systems. Finally, two numerical examples are given to show the effectiveness of the present approach.  相似文献   

6.
The exponential H filtering problem of discrete‐time switched state‐delay systems under asynchronous switching is considered in this paper. The objective is to design a full‐order or reduced‐order switched filter guaranteeing the exponential stability with the weighted H performance of the filtering error system. A sufficient condition for the exponential stability with the weighted H performance of the filtering error system is provided based on delay‐dependent multiple Lyapunov‐Krasovskii functionals. The gains of the filter can be obtained by solving a set of linear matrix inequalities. A numerical example is presented to demonstrate the effectiveness of the developed results.  相似文献   

7.
This article studies the problem of H filtering for linear discrete‐time systems with state delay. Via delay partitioning idea, two new H filter design methods are proposed with much less conservatism than most existing results. The improvement lies in constructing two new Lyapunov–Krasovskii functionals by partitioning the known constant lower bound of delay into several segments equally. Using free‐weighting matrix and Jensen inequality methods, two new delay‐dependent bound real lemmas (BRLs) are obtained, which depend on both the delay and the partitioning number. Based on the obtained BRLs, new H filter design approaches are proposed in terms of linear matrix inequalities. The results are immediately extended to multiple time delay case and polytopic uncertain case, respectively. Three numerical examples are presented to illustrate the effectiveness and advantage of the proposed approaches. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

8.
This paper considers the problem of delay‐dependent adaptive reliable H controller design against actuator faults for linear time‐varying delay systems. Based on the online estimation of eventual faults, the parameters of adaptive reliable H controller are updating automatically to compensate the fault effects on the system. A new delay‐dependent reliable H controller is established using a linear matrix inequality technique and an adaptive method, which guarantees the stability and adaptive H performance of closed‐loop systems in normal and faulty cases. A numerical example and its simulation results illustrate the effectiveness of the proposed method. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

9.
This paper considers H?/L fault detection for discrete‐time linear parameter‐varying (LPV) systems with parametric uncertainty. In H?/L fault detection scheme, residual generation and threshold computation are simultaneously designed. With consideration of H?/L performance indices, the generated residual is sensitive to faults while robust against unknown disturbances. Furthermore, the L performance provides a time‐varying threshold for residual evaluation. This paper proposes a novel H?/L fault detection observer design method to handle actuator fault detection for LPV systems with parametric uncertainty. Sufficient conditions of the fault detection observer design in the finite‐frequency domain are derived as linear matrix inequalities. Numerical simulations are used to illustrate the effectiveness and superiority of the proposed fault detection observer design approach.  相似文献   

10.
This paper investigates the robust H control problem for continuous‐time piecewise time‐delay systems by using piecewise continuous Lyapunov function. The uncertainties of the systems under consideration are expressed in a linear fractional form. A strict linear matrix inequality approach is developed to obtain delay‐dependent asymptotic stability conditions and H performance. The H controller design problem is solved by exploiting the cone complementarity linearization (CCL) method. Finally an example is given to illustrate the application of the proposed approach. Copyright © 2008 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society  相似文献   

11.
This paper considers quadratic stabilizability and H feedback control for stochastic discrete‐time uncertain systems with state‐ and control‐dependent noise. Specifically, the uncertain parameters considered are norm‐bounded and external disturbance is an l2‐square summable stochastic process. Firstly, both quadratic stability and quadratic stabilization criteria are presented in the form of linear matrix inequalities (LMIs). Then we design the robust H state and output feedback H controllers such that the system with admissible uncertainties is not only quadratically internally stable but also robust H controllable. Sufficient conditions for the existence of the desired robust H controllers are obtained via LMIs. Finally, some examples are supplied to illustrate the effectiveness of our results.  相似文献   

12.
This paper is concerned with the design of robust non‐minimal order H filters for uncertain discrete‐time linear systems. The uncertainty is assumed to be time‐invariant and to belong to a polytope. The novelty is that a convex filtering design procedure with Linear Matrix Inequality constraints is proposed to synthesize guaranteed‐cost filters with order greater than the order of the system. An H‐norm bound for the transfer‐function from the system input to the filtering error is adopted as performance criterion. The non‐minimal order filters proposed generalize other existing filters with augmented structures from the literature and can provide better performance. An extension to the problem of robust smoothing is proposed as well. The procedure is illustrated by a numerical example. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

13.
We develop a novel frequency‐based H‐control method for a large class of infinite‐dimensional linear time‐invariant systems in transfer function form. A major benefit of our approach is that reduction or identification techniques are not needed, which avoids typical distortions. Our method allows to exploit both state‐space or transfer function models and input/output frequency response data when only such are available. We aim for the design of practically useful H‐controllers of any convenient structure and size. We use a nonsmooth trust‐region bundle method to compute arbitrarily structured locally optimal H‐controllers for a frequency‐sampled approximation of the underlying infinite‐dimensional H‐problem in such a way that (i) exponential stability in closed loop is guaranteed and that (ii) the optimal H‐value of the approximation differs from the true infinite‐dimensional value only by a prior user‐specified tolerance. We demonstrate the versatility and practicality of our method on a variety of infinite‐dimensional H‐synthesis problems, including distributed and boundary control of partial differential equations, control of dead‐time and delay systems, and using a rich testing set.  相似文献   

14.
The stochastic finite‐time H filtering issue for a class of nonlinear continuous‐time singular semi‐Markov jump systems is discussed in this paper. Firstly, sufficient conditions on singular stochastic H finite‐time boundedness for the filtering error system are established. The existence of a unique solution for the corresponding system is also ensured. Secondly, based on the bounds of the time‐varying transition rate, without imposing constraints on slack variables, a novel approach to finite‐time H filter design is proposed in the forms of strict LMIs, which guarantees the filtering error system is singular stochastic H finite‐time bounded and of a unique solution. Compared with the existing ones, the presented results reveal less conservativeness. Finally, one numerical example is exploited to testify the advantage of the proposed design technique.  相似文献   

15.
This paper addresses the finite‐horizon H filtering problem for a kind of discrete state‐saturated time‐varying complex networks subjected to the weighted try‐once‐discard (WTOD) protocol. Under the WTOD protocol, only the measurement signal from one sensor node is allowed to be transmitted to the filter at each time point, where such a node is selected based on a certain quadratic selection principle. The main purpose of this paper is to design an H filter that guarantees the disturbance attenuation level on a given finite time‐horizon for the underlying complex network subject to both state saturations and WTOD protocols. By using the convex hull approach, sufficient conditions are first obtained to ensure the existence for the desired filter to achieve the H performance specification by means of a few recursive matrix inequalities. Then, based on the obtained results, the filter parameters are designed, which cope effectively with both state saturations and communication protocols. Finally, a numerical simulation is employed to demonstrate the validity of the developed filter algorithm.  相似文献   

16.
This paper investigates a global stabilization problem and a nonlinear H control problem for a class of nonminimum phase nonlinear multivariable systems. To avoid the complicated recursive design procedure, an asymptotic time‐scale and eigenstructure assignment method is adopted to construct the control laws for the stabilization problem and the nonlinear H control problem. A sufficient solvability condition is established onthe unstable zero dynamics of the system for global stabilization problem and nonlinear H control problem, respectively. Moreover, based on the sufficient solvability condition, an upper bound of the achievable L2‐gain is estimated for the nonlinear H control problem. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

17.
This paper is concerned with the problem of H fuzzy static output feedback control for discrete‐time Takagi‐Sugeno (T‐S) fuzzy systems, and new design methods are presented. By defining a fuzzy Lyapunov function, a new sufficient condition guaranteeing the H performance of the T‐S fuzzy systems is derived, and the condition is expressed by a set of linear matrix inequalities. In comparison with the existing literature, the proposed approach may provide more relaxed condition while ensuring better H performance. The simulation results illustrate the effectiveness of the proposed approach. Copyright © 2009 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society  相似文献   

18.
This paper deals with the problem of delay‐dependent H filtering for spatially interconnected time‐delay systems (SITSs) with interconnected chains in finite frequency domains. First, a multidimensional (N‐D) hybrid time‐delay Roesser model and a delay‐dependent finite frequency bounded ream lemma (BRL) for SITSs with interconnected chains are proposed. Then, using the obtained delay‐dependent finite frequency BRL, a finite frequency H filter design method can be derived by solving a set of linear matrix inequalities (LMIs). Finally, a practical example is provided to clearly demonstrate the effectiveness of the proposed method.  相似文献   

19.
In this paper, we investigate the H control problem for uncertain switched nonlinear systems with passive and non‐passive subsystems. For any given average dwell time, any given passivity rate and any given disturbance attenuation level, we design feedback controllers of subsystems, which may depend on the pre‐given constants, to solve the H control problem for the uncertain switched nonlinear systems for all admissible uncertainties. For linear systems, the exponential small‐time norm‐observability is shown to be preserved under disturbance. Two examples are provided to demonstrate the effectiveness of the proposed design method. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

20.
This paper is concerned with the problems of robust stochastic stabilization and robust H control for uncertain discrete‐time stochastic bilinear systems with Markovian switching. The parameter uncertainties are time‐varying norm‐bounded. For the robust stochastic stabilization problem, the purpose is the design of a state feedback controller which ensures the robust stochastic stability of the closed‐loop system irrespective of all admissible parameter uncertainties; while for the robust H control problem, in addition to the robust stochastic stability requirement, a prescribed level of disturbance attenuation is required to be achieved. Sufficient conditions for the solvability of these problems are obtained in terms of linear matrix inequalities (LMIs). When these LMIs are feasible, explicit expressions of the desired state feedback controllers are also given. An illustrative example is provided to show the effectiveness of the proposed approach. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号