首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Stress free polishing method is preferred for a damage free surface of copper with ultra-flatness and ultra-smoothness. Such a surface offers a perfect substrate for integrated circuits and micro-electromechanical systems fabrication. A new polishing method, called electrogenerated chemical polishing (EGCP), is proposed based on the principle of the scanning electrochemical microscope (SECM) and the diffusion controlled chemical reaction. Roughness of a Cu surface is reduced from 100.5 nm to 3.6 nm by the proposed method. To demonstrate the planarization capability of this new method, a patterned Cu surface with an array of micro-columns is planarized with a peak-valley (PV) value from 4.7 μm to 0.059 μm.  相似文献   

2.
This paper presents a long-stroke contact scanning probe with high precision and low stiffness for micro/nano coordinate measuring machines (micro/nano CMMs). The displacements of the probe tip in 3D are detected by two plane mirrors supported by an elastic mechanism, which is comprised of a tungsten stylus, a floating plate and two orthogonal Z-shaped leaf springs fixed to the outer case. A Michelson interferometer is used to detect the vertical displacement of the mirror mounted on the center of the floating plate. An autocollimator based two dimensional angle sensor is used to detect the tilt of the other plane mirror located at the end of the arm of the floating plate. The stiffness and the dynamic properties are investigated by simulation. The optimal structural parameters of the probe are obtained based on the force-motion model and the constrained conditions of stiffness, measurement range and horizontal size. The results of the performance tests show that the probe has a contact force gradient within 0.5 mN/μm, a measuring range of (±20 μm), (±20 μm), and 20 μm, respectively, in X, Y and Z directions, and a measurement standard deviation of 30 nm. The feasibility of the probe has preliminarily been verified by testing the curved surface of a convex lens.  相似文献   

3.
This paper presents a new optical method of coordinate measuring machine (CMM) verification. The proposed system based on a single-mode fiber optical-comb pulsed interferometer with a ball lens of refractive index 2 employed as the target. The target can be used for absolute-length measurements in all directions. The laser source is an optical frequency comb, whose repetition rate is stabilized by a rubidium frequency standard. The measurement range is confirmed to be up to 10 m. The diagonals of a CMM are easier to verify by the proposed method than by the conventional artifact test method. The measurement uncertainty of the proposed method is also smaller than that of the conventional method because the proposed measurement system is less affected by air temperature; it achieves an uncertainty of approximately 7 μm for measuring lengths of 10 m. The experimental results show that the measurement accuracy depends on noise in the interference fringe, which arises from airflow fluctuations and mechanical vibrations.  相似文献   

4.
《Wear》2006,260(4-5):538-548
Roughness of disk media influences the tribological interaction of head-disk interfaces, especially when the intended flying-height is below 5 nm that is required to achieve extremely high-density recording (EHDR). Roughness parameters such as the root-mean-square (RMS) amplitude, however, are influenced by the scale of measurement, such as the scan size. Effects related to scale of measurement such as varying the scan size were investigated and means to reduce such effects were proposed by establishing an “ad hoc” digital filtering procedure. Two types of magnetic disks intended for EHDR were measured by an atomic force microscope (AFM) at various scan dimensions ranging from 0.5 μm × 0.5 μm to 112 μm × 112 μm. The proposed filtering method used the RMS values as a filter design parameter for choosing the appropriate high-pass cutoff wavelength for each scan size. The study revealed the existence of a unique cutoff wavelength that would identify different wavelength regimes and the associated critical scan size in each disk. To substantiate the effectiveness of the proposed filtering method in reducing the scale of measurement effects related to the scan size, other roughness parameters were also calculated subsequent to the filtering procedure. It was found that the proposed filtering scheme effectively reduced the scale of measurement effects in the amplitude parameters (e.g., RMS and the ten-point height variation) and the functional parameters (e.g., material and core void volumes). These parameters exhibited steady-state trends with respect to increasing scan size, indicating reduced scale of measurement effects.  相似文献   

5.
A new approach is proposed to improve a graphical approach with considering intensity coupling loss coefficients in the analytical derivation of the optical transfer functions for a symmetric double stage vertically coupled microring resonator. An optimum transmission coupling condition is determined with considering terms of couplers intensity loss which leads to low insertion loss of 1.2 dB, finesse of 1525, the out of band rejection ratio of 61.8 dB. The resonating system is used as an optical force sensing system to make the benefit of the accuracy of measurements in micro and nano scales. The sensitivity of proposed force sensor in terms of wavelength-shift is 33 nm/nN and the limit of detection is 1.6 × 10−2 nN. The proposed sensing system has the advantages of self-calibration and the low power consumption due to the low intensity.  相似文献   

6.
The frictional response of a multi-component phenolic-based friction material is highly complex under a set of variable loads and speeds. The present paper discusses the sensitivity of friction coefficient (μ) of friction composites containing synthetic graphite with different particle sizes (with similar crystallinity range) to braking pressure and sliding speed. The friction studies were carried out on a sub scale brake-test-rig, following 4 loads × 3 speeds experimental design. The best combination of performance properties was observed for the composite containing synthetic graphite with an average particle size of 410 μm. Other particle sizes which resulted in good performance were 38 and 169 μm. Very fine particle sizes were not beneficial for desired combination of performance properties. Regression analysis of μ following an orthogonal L9(3 × 3) experimental design method revealed that the first order influences of sliding speed and braking pressure were significant. When all the combinatorial influences of braking pressure and sliding speed are taken into account together their simultaneous effects would be most effective in the range of graphite particle size ~80–250 μm.  相似文献   

7.
G.M. Guidoni  M.V. Swain  I. Jäger 《Wear》2009,266(1-2):60-68
Two different diamond nanoindenter tips, a rounded conical (~1200 nm radius) and a sharp cube corner (20–50 nm radius) were used to abrade bovine enamel. Square abraded areas (2 μm × 2 μm, 5 μm × 5 μm, 10 μm × 10 μm) were generated with loads that varied from 50 μN to 500 μN depending on the indenter tip. In addition normal and lateral forces were simultaneously measured along 10 μm single scratched lines with the sharp cube corner tip. SEM (scanning electron microscopy) and TEM (transmission electron microscopy) were also used to characterise the worn areas and debris. Two different wear mechanisms were observed depending on the geometry of the tip. The rounded tip generates a predominantly elastic contact that mainly compresses and plastically deforms the superficial material and generates severe shear deformation within the sub-surface material which, under certain conditions, fractures and removes material from the sample. The sharp tip cuts into and ploughs the enamel creating a wedge or ridge of material ahead of itself which eventually detaches. This sequence is repeated continuously for every passage of the sharp indenter tip. The different mechanisms are discussed in terms of abrading tip contact angle and enamel microstructure.  相似文献   

8.
This paper describes the optimisation of a nano-positioning stage for a Transverse Dynamic Force Microscope (TDFM). The nano-precision stage is required to move a specimen dish within a horizontal region of 1 μm × 1 μm and with a resolution of 0.3 nm. The design objective was to maximise positional accuracy during high speed actuation. This was achieved by minimising out-of-plane distortions and vibrations during actuation. Optimal performance was achieved through maximising out-of-plane stiffness through shape and material selection as well optimisation of the anchoring system. Several shape parameters were optimised including the shape of flexural beams and the shape of the dish holder. Physical prototype testing was an essential part of the design process to confirm the accuracy of modelling and also to reveal issues with manufacturing tolerances. An overall resonant frequency of 6 kHz was achieved allowing for a closed loop-control frequency of 1.73 kHz for precise horizontal motion control. This resonance represented a 12-fold increase from the original 500 Hz of a commercially available positioning stage. Experimental maximum out-of-plane distortions below the first resonance frequency were reduced from 0.3 μm for the first prototype to less than 0.05 μm for the final practical prototype.  相似文献   

9.
Micro holes with internal features are widely used as spray holes and cooling holes nowadays, which are usually required to be with high aspect ratio and shape accuracy, as well as good surface quality. An electrochemical machining (ECM) process is presented to machine these micro holes with diameter <200 μm. A quantitative relation between micro-hole diameter and machining parameters including voltage, duty ratio and feedrate is obtained through orthogonal experiments. According to the designed shape of internal features, change rules of machining parameters for varied diameters in different depth are obtained, and then micro holes with internal features are shaped precisely. Taking reverse tapered hole as an example, ECM experiments by varying parameters of voltage, duty ratio and feedrate (called varying voltage machining, varying duty ratio machining and varying feedrate machining, respectively) are carried out. Micro holes with inlet diameter of 178 μm and taper angle of 1.05° are shaped on a 1.0 mm-thick workpiece of 18CrNi8. The deviation of inlet is <3 μm and the taper-angle error is <0.1° in varying voltage machining. The corresponding dimensional accuracy of taper angle is improved by 51% than that of varying duty ratio machining under the same efficiency. The machining efficiency of varying voltage machining is increased by 36% compared to the efficiency in varying feedrate machining. In addition, the micro holes with complex features of funnel shape and bamboo shape are machined.  相似文献   

10.
This paper presents the statistical analysis applied into the shape of microlenses (MLs) for validating the high-reproducibility feature of their fabrication process. The MLs were fabricated with the AZ4562 photoresist, using photolithography and thermal reflow processes. Two types of MLs arrays were produced for statistical analysis purposes: the first with a cross-sectional diameter of 24 μm and the second with a cross-sectional diameter of 30 μm, and both with 5 μm spacing between MLs. In the case of 24 μm diameter arrays, the measurements showed a mean difference in diameter of 2.78 μm with a standard deviation (SD) of 0.22 μm (e.g., 2.78 ± 0.22 μm of SD) before the reflow, and 2.34 ± 0.35 μm of SD after the reflow. For the same arrays, the mean difference in height obtained was, comparatively to the 5.06 μm expected, 0.76 ± 0.10 μm of SD before the reflow and 1.91 ± 0.15 μm of SD after the reflow, respectively. A mean difference in diameter of 2.64 ± 0.41 μm of SD before the reflow, and 1.87 ± 0.34 μm of SD after the reflow was obtained for 30 μm diameter MLs arrays. For these MLs, a mean difference in height of 0.71 ± 0.12 μm of SD before the reflow and 2.24 ± 0.24 μm of SD after the thermal reflow was obtained, in comparison to the 5.06 μm of height expected to obtain. These results validate the requirement for reproducibility and opens good perspectives for applying this fabrication process on high-volume production of MLs arrays.  相似文献   

11.
The development of a new probing method to inspect the inner diameter of micro-scale holes is presented in this paper. This was accomplished by contact detection using acoustic emission with a Ø170 μm rotating wire probe tip. Contact is detected when the rotating probe approaches and impacts the hole’s inner surface. The effective diameter of the rotating probe is calibrated by using a high precision grade 0 Mitutoyo gauge block. The wire rotating probe used was fabricated with micro stainless steel wire and micro tubes. The probe’s effective diameter was compensated for in the measurement of the hole. The probe was used to measure the diameter and the roundness of micro-scale holes. Probes used in previous publications have different geometry than the probe in this paper and are used almost exclusively for external dimensions. Micro-scale holes of less than 1.0 mm in diameter and 10 mm in depth are successfully measured and the 3D profile is created accordingly. Also, the out-of-roundness values of each level spacing, 50 μm apart in height, are calculated.  相似文献   

12.
An optical-comb pulsed interferometer was developed for the positioning measurements of the industrial coordinate measuring machine (CMM); a rough metal ball was used as the target of the single-mode optical fiber interferometer. The measurement system is connected through a single-mode fiber more than 100 m long. It is used to connect a laser source from the 10th floor of a building to the proposed measuring system inside a CMM room in the basement of the building. The repetition frequency of a general optical comb is transferred to 1 GHz by an optical fiber-type Fabry–Pérot etalon. Then, a compact absolute position-measuring system is realized for practical non-contact use with a high accuracy of measurement. The measurement uncertainty is approximately 0.6 μm with a confidence level of 95%.  相似文献   

13.
The importance of beam machining and extreme ultraviolet lithography technologies in the area of precise and fine machining used for high-density optical discs, integrated circuits and patterned media of hard disc drives (HDDs) is rapidly increasing.In this paper, a very simple vacuum-compatible rotary spindle is proposed that uses an ionic liquid as a lubricant with a very low vapor pressure. The usefulness of the proposed spindle lubricated by an ionic liquid was experimentally confirmed by measuring the partial pressures of outgassed products during rotation of the spindle in the vacuum chamber, measuring the accuracy of movement of the rotary table and machining circular grooves by an electron beam in a scanning electron microscope (SEM). It was found that the proposed spindle could be used in vacuum, and the partial pressures of outgassed products were almost the same as those of a clean, empty vacuum chamber. In addition, it was confirmed that by using the proposed spindle, circular grooves with diameters of 200 and 400 μm, 450 nm width and 40 nm depth could be machined on a photoresist surface coated on a silicon wafer in vacuum of an SEM.  相似文献   

14.
This paper proposes a non-contact pulsed interferometer for dimensional metrology using the repetition frequency of an optical frequency comb. A compact absolute-length measuring system is established for practical non-contact measurement based on a single-mode fiber interferometer. The stability and accuracy of the measurements are compared with those from a commercial incremental laser interferometer. The drifts of both systems have the same tendency and a maximum difference is approximately 0.1 μm. Subsequently, preliminary absolute-length measurements up to 1.5 m were measured. The signal-to-noise ratios of the small signals are improved by a frequency-selective amplifier. It is apparent that the noise is rejected, and the intensity of the interference fringes is amplified, achieving a maximum standard deviation of measurement approximately 1 μm. The proposed technique can provide sufficient accuracy for non-contact measurement in applications such as a simple laser-pulse tracking system.  相似文献   

15.
For expected applications of fast tool servo (FTS) and vibration machining, a 3-axis positioning device with low interference motions is proposed in this paper. The positioning device was composed of a XY stage and a Z-axis stage, which were actuated by piezoelectric (PZT) actuators combined with specially-designed symmetric flexure hinges. Through fundamental experiments, when the applied voltage was 50 V, the displacements along the X-, Y-, and Z-axes were measured as 6.35 μm, 6.61 μm, and 10.12 μm, respectively, with the corresponding small percentages of interference displacement of 3.80%, 4.02%, and 3.30%. In addition, the resonant frequencies were obtained as 1.06 kHz, 0.65 kHz, and 0.54 kHz. To examine control performances, a real-time control system considering hysteresis effect of PZT actuators was implemented by the field-programmable gate array (FPGA) modules to conduct tracing controls for sinusoidal waveform, 3D Lissajous motion, and 3D spiral motion. The tracing errors along 3-axis actuations were under 30 nm. The performances of a 3-axis positioning device were well demonstrated. Future work is to perform machining examinations on a machine tool.  相似文献   

16.
A shear mode micro-probing system was constructed for gap measurement of a precision slot die coater with a nominal gap width of 90 μm and a length of 200 mm. A glass micro-stylus with a nominal tip ball diameter of 52.6 μm was oscillated by a tuning fork quartz crystal resonator with its oscillation direction parallel to the measurement surfaces. An on-line qualification setup was established to compensate for the influences of the uncertainty sources, including the water layers on the measurement surfaces. The measurement uncertainty of the measured gap width was estimated to be less than 100 nm.  相似文献   

17.
Large-scale rotors in the paper and steel industry are called rolls. Rolls are reground at regular intervals and roundness measurements are made throughout the machining process. Measurement systems for roundness and diameter variation of large rolls (diameter <2000 mm) are available on the market, and generally use two to four sensors and a roundness measurement algorithm. These methods are intended to separate roundness of the rotor from its movement. The hybrid four-point method has improved accuracy, even for harmonic component amplitudes. For reliable measurement results, every measurement should be traceable with an estimation of measurement uncertainty. In this paper, the Monte-Carlo method is used for uncertainty evaluation of the harmonic components of the measured roundness profile under typical industrial conditions. According to the evaluation, the standard uncertainties for the harmonic amplitudes with the hybrid method are below 0.5 μm for the even harmonics and from 1.5 μm to 2.5 μm for the odd harmonics, when the standard uncertainty for the four probes is 0.3 μm each. The standard uncertainty for roundness deviation is 3.3 μm.  相似文献   

18.
In the framework of the HiTeMS project of the European Metrology Research Pogramme (EMRP) a new multi-wavelength device for measurement of high temperatures in industrial applications was developed at INRIM. The apparatus takes advantage of the ultra-violet operation with working wavelengths from 350 nm up, which reduces the possible errors connected with the multi-wavelength approach. The instrument has been characterised in terms of optical and electronic behaviour and some laboratory trials were carried out to verify the reliability of the multi-wavelength approach. The true temperature of a blackbody source at 1300 °C with optical windows of unknown spectral transmittance interposed has been defined. By applying an approach that allows a result to be accepted when a threshold limit is reached, it was found that, when an acceptable result can be obtained, errors are comprised within less than 1% of the temperature of the source. Three others single-band thermometers, at 508 nm, 650 nm and an IR broadband 0.8–1.1 μm, were also used to the purpose of a comparison. It has been found that, when the multi-wavelength approach is applicable, it provides generally better or in few cases, at worst similar results of corrected single-wavelength thermometers.  相似文献   

19.
In this investigation, a self-developed signal processing method for Fabry–Perot interferometer is proposed which can be utilized for high-speed dynamic displacement measurements, e.g. mechanical vibration measurements. The lookup table (LUT) integrated with the interference intensity equation has been employed for the interpolation processing of interference signals. With the aid of this method, the interpolation error has been reduced by 40% in comparison with that resulting from the commercial sinusoidal signal processing module. By operations of Fast Fourier Transform (FFT), the displacement measurement distribution can be converted into the frequency spectrum diagram. The interpolation resolution of the proposed interferometric displacement measurement system is about 0.1 nm. Experimental results demonstrate that this interferometer system is available for measuring frequencies till 2 kHz where its corresponding amplitude is 0.15 μm.  相似文献   

20.
A precise inclinometer (Talyvel 4) was adopted for evaluating aligning straightness of the first 71 m of the KEK electron/positron injector linear accelerator (linac). The straightness could be evaluated with a standard deviation of less than 49 μm. It is in good agreement with those obtained using a conventional alignment telescope and our laser-based alignment system.Error estimation based on the rules of error propagation shows that shape evaluation with a standard deviation of 0.3 mm for a distance of 500 m can be achieved using the proposed method. It indicates that this method is suitable for evaluating straightness of several hundred meters of linacs with sub-millimeter of accuracy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号