首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 54 毫秒
1.
In this paper, tribological behavior and mechanical properties of nanostructured Al2024 alloy produced by mechanical milling and hot extrusion were investigated before and after adding B4C particles. Mechanical milling was used to synthesize the nanostructured Al2024 in attrition mill under argon atmosphere up to 50 h. A similar process was used to produce Al2024–5 wt.%B4C composite powder. The milled powders were formed by hot pressing and then were exposed to hot extrusion in 750 °C with extrusion ratio of 10:1. To study the microstructure of milled powders and hot extruded samples, optical microscopy, transmission electron microscopy and scanning electron microscopy (SEM) equipped with an energy dispersive X-ray spectrometer (EDS) were used. The mechanical properties of samples were also compared together using tension, compression and hardness tests. The wear properties of samples were studied using pin-on-disk apparatus under a 20 N load. The results show that mechanical milling decreases the size of aluminum matrix grains to less than 100 nm. The results of mechanical and wear tests also indicate that mechanical milling and adding B4C particles increase strength, hardness and wear resistance of Al2024 and decrease its ductility remarkably.  相似文献   

2.
Zirconium alloys show attractive properties for astronautic applications where the most important factors are anti-irradiation, corrosion resistance, anti-oxidant, very good strength-to-weight ratio. The effects of Al content (2.2–6.9 wt%) on structure and mechanical properties of the hot-rolled ZrTiAlV alloy samples were investigated in this study. Each sample of the hot-rolled ZrTiAlV alloys with Al contents from 2.2 wt% to 5.6 wt% is composed of the α phase and β phase, meanwhile, the relative content of the α phase increased with the Al content. However, the (ZrTi)3Al intermetallic compound was observed as the Al content increased to 6.9 wt%. Changes of phase compositions and structure with Al content distinctly affected mechanical properties of ZrTiAlV alloys. Yield strength of the alloy with 2.2 wt% Al is below 200 MPa. As Al content increased to 5.6 wt%, the yield strength, tensile strength and elongation of the examined alloy are 1088 MPa, 1256 MPa and 8%, respectively. As Al content further increased to 6.9 wt%, a rapid decrease in ductility was observed as soon as the (ZrTi)3Al intermetallic compound precipitated. Results show that the ZrTiAlV alloys with Al contents between 3.3 wt% and 5.6 wt% have excellent mechanical properties.  相似文献   

3.
In this work, the effect of SiC particle size and its amount on both physical and mechanical properties of Al matrix composite were investigated. SiC of particle size 70 nm, 10 μm and 40 μm, and Al powder of particle size 60 μm were used. Composites of Al with 5 and 10 wt.% SiC were fabricated by powder metallurgy technique followed by hot extrusion. Phase composition and microstructure were characterized. Relative density, thermal conductivity, hardness and compression strength were studied. The results showed that the X-ray diffraction (XRD) analysis indicated that the dominant components were Al and SiC. Densification and thermal conductivity of the composites decreased with increasing the amount of SiC and increased with increasing SiC particle size. Scanning electron microscope (SEM) studies showed that the distribution of the reinforced particle was uniform. Increasing the amount of SiC leads to higher hardness and consequently improves the compressive strength of Al–SiC composite. Moreover, as the SiC particle size decreases, hardness and compressive strength increase. The use of fine SiC particles has a similar effect on both hardness and compressive strength.  相似文献   

4.
A mixture design was used in experiments, to determine the optimal mixture for composites of rubberwood flour (RWF) and reinforced recycled polypropylene (rPP). The mixed materials were extruded into panels. Effects were determined of the mixture components rPP, RWF, maleic anhydride-grafted polypropylene (MAPP), and ultraviolet (UV) stabilizer, on the mechanical properties. The overall composition significantly affected flexural, compressive, and tensile properties. The fractions of recycled polypropylene and rubberwood flour increased all the mechanical material properties; however, increasing one fraction must be balanced by decreasing the other, and the rubberwood flour fraction had a higher effect size. The fraction of MAPP was best kept in mid-range of the fractions tested, while the UV stabilizer fraction overall degraded the mechanical properties. Our results suggest that the fraction of UV stabilizer should be as small as possible to minimize its negative influences. The models fitted were used for optimization of a desirability score, substituting for the multiple objectives modeled. The optimal formulation found was 50.3 wt% rPP, 44.5 wt% RWF, 3.9 wt% MAPP, 0.2 wt% UV stabilizer, and 1.0 wt% lubricant; the composite made with this formulation had good mechanical properties that closely matched the model predictions.  相似文献   

5.
The present work deals with studies on the manufacturing and investigation of mechanical and wear behavior of aluminum alloy matrix composites (AAMCs), produced using powder metallurgy technique of ball milled mixing in a high energy attritor and using a blend–press–sinter methodology. Matrix of pre-mechanical alloyed Al–4.5 wt.% Cu was used to which different fractions of nano and micron size TiC reinforcing particles (ranging from 0 to 10 wt.%) were added. The powders were mixed using a planetary ball mill. Consolidation was conducted by uniaxial pressing at 650 MPa. Sintering procedure was done at 400 °C for 90 min. The results indicated that as TiC particle size is reduced to nanometre scale and the TiC content is increased up to optimum levels, the hardness and wear resistance of the composite increase significantly, whereas relative density, grain size and distribution homogeneity decrease. Using micron size reinforcing particulates from 5% to 10 wt.%, results in a significant hardness reduction of the composite from 174 to 98 HVN. Microstructural characterization of the as-pressed samples revealed reasonably uniform distribution of TiC reinforcing particulates and presence of minimal porosity. The wear test disclosed that the wear resistance of all specimens increases with the addition of nano and micron size TiC particles (up to 5 wt.%). Scanning electron microscopic observation of the worn surfaces was conducted and the dominant wear mechanism was recognized as abrasive wear accompanied by some delamination wear mechanism.  相似文献   

6.
In this paper, Al–7 wt% Si alloy was processed via high pressure torsion (HPT) at an applied pressure 8 GPa for 10 revolutions at room temperature. The microstructure and hardness of the HPT samples were investigated and compared with those of the as-cast samples. The wear properties of as-cast and the HPT samples under dry sliding conditions using different sliding distances and loads were investigated by reciprocated sliding wear tests.The HPT process successfully resulted in nanostructure Al–7 wt% Si samples with a higher microhardness due to the finer Al matrix grains and Si particles sizes with more homogeneous distribution of the Si particles than those in the as-cast samples.The wear mass loss and coefficient of friction values were decreased after the HPT process. The wear mechanism was observed to be adhesive, delamination, plastic deformation bands and oxidization in the case of the as-cast alloy. Then, the wear mechanism was transformed into a combination of abrasive and adhesive wear after the HPT process. The oxidization cannot be considered as a mechanism that contributes to wear in the case of HPT samples, because O2 was not detected in all conditions.  相似文献   

7.
Particulate reinforced Al-MMCs exhibits better mechanical properties and improved wear resistance over other conventional alloys. In the present paper, the experimental results of the mechanical and tribological properties of Al6061–SiC composites are presented. The composites of Al6061 containing 2–6 wt% SiC were prepared using liquid metallurgy route. The experimental results showed that the density of the composites increase with increased SiC content and agrees with the values obtained through the rule of mixtures. The hardness and ultimate tensile strength of Al6061–SiC composites were found to increase with increased SiC content in the matrix at the cost of reduced ductility. The wear properties of the composites containing SiC were superior to that of the matrix material.  相似文献   

8.
Nanocrystalline (nc) Mg–5 wt%–Al and Mg–5 wt%–Al–10.3 wt%–Ti metal–metal composites have been synthesized by mechanical alloying (MA) for 20 h of milling duration. XRD was employed as analysis tool for the structural evolution during MA and thermal stability at elevated temperatures. Kinetics of grain growth of Mg–5 wt%–Al–10.3 wt%–Ti and Mg–5 wt%–Al systems under isothermal and isochronal annealing was investigated. The results showed that the grain growth behavior can be described by the parabolic kinetic equation of grain growth and the activation energy of mechanically alloyed metal–metal composite is higher than that of cast Mg alloy and that of its base metal of Mg–5 wt%–Al.  相似文献   

9.
Polyacrylate composites with various fillers such as multi-walled carbon nanotube (CNT), aluminum flake (Al-flake), aluminum powders and Al–CNT were prepared by a ball milling. The thermal decomposition temperature increased by as much as 64 °C for polyacrylate/Al-flake 70 wt% composite compared to polyacrylate. The thermal conductivity of polyacrylate/Al–CNT composites increased from 0.50 to 1.67 W/m K as the Al–CNT content increases from 50 to 80 wt%. The thermal conductivity of the composite sheet increases with the sheet thickness. At the given filler concentration (90 wt%), the composite filled with aluminum powder of 13 μm has a higher thermal conductivity than the one filled 3 μm powder, and the composite filled with mixture of two powders showed a synergistic effect on the thermal conductivity. The morphology indicates that the dispersion of CNT in the polyacrylate/Al-flake + CNT composite is not perfect, and agglomeration of CNTs was observed.  相似文献   

10.
The addition of ceramic reinforced material, SiC particles, to resin matrices, results in the improvement of the overall performance of the composite, allowing the application of these materials as tribo-materials in industries such as: automotive, aeronautical and medical. Particle-reinforced polymeric composites are widely used as biomaterials, for example as dental filler materials and bone cements. These reinforced composites have improved mechanical and tribological performance and have higher values of elastic modulus and hardness, and also reduce the shrinkage during the polymerisation compared with resin matrices. However, the effect of the filler level in mechanical and tribological behaviour is not quite understood.The aim of this work is to determine the influence of the particle volume fraction and particle size in the wear loss of the composites and their antagonists. Reciprocating wear tests were conducted using a glass sphere against resin polyester silica reinforced composite in a controlled medium, with an abrasive slurry or distilled water. For 6 μm average particle dimension, seven particles contents were studied ranging from 0% to 46% of filler volume fraction (FVF). Afterwards, filler volume fractions of 10% and 30% were selected; and, for these percentages, 7 and 4 average particle dimensions were tested and were evaluated regarding their wear behaviour, respectively. The reinforcement particle dimensions used ranged from 0.1 μm to 22 μm with the 10% filler fraction, and for 30% of filler content the range extended from 3 μm to 22 μm. The results allow us to conclude that in an abrasive slurry medium the composite abrasion resistance decreases with the increase of the particle volume fraction, in spite of the accompanying rise in hardness and elastic modulus. With constant FVF, and abrasive slurry, the composite wear resistance increases with increasing average particle dimension. In a distilled water medium and with several FVF values, the minimum wear was registered for a median particle content of 24%. In this medium and with constant FVF the highest wear resistance occurred for average reinforcement particles of 6 μm. The removal mechanisms involved in the wear process are discussed, taking into account the systematic SEM observations to evaluate the wear mechanisms.  相似文献   

11.
《Materials Letters》2006,60(21-22):2695-2699
Wood with its rational and magical inner structures was used as a template to fabricate C/Al and (C + SiC)/Al composites in this research. The carbon frame was first pyrolyzed from the wood template. The final composites were then obtained by infiltrating Al alloy and silicone resin into the carbon frame. The microstructures and the wear properties of these products were analyzed. The results show that the structures of the C/Al and (C + SiC)/Al composites are controlled by the natural structures of the wood. Moreover, the carbon in the composites reduced the wear rate of the Al alloy as an efficient lubricant. Compared with the C/Al composite, the (C + SiC)/Al composite shows better wear resistance because of silicon carbide.  相似文献   

12.
The effects of extrusion processing temperature on the rheological, dynamic mechanical analysis and tensile properties of kenaf fiber/high-density polyethylene (HDPE) composites were investigated for low and high processing temperatures. The rheological data showed that the complex viscosity, storage and loss modulus were higher with high processing temperature. Complex viscosities of pure HDPE and 3.4 wt% composite with zero shear viscosity of ⩽2340 Pa s were shown to exhibit Newtonian behavior while composites of 8.5 and 17.5 wt% with zero shear viscosity ⩾30,970 Pa s displayed non-Newtonian behavior. The Han plots revealed the sensitivity of rheological properties with changes in processing temperature. An increase in storage and loss modulus and a decrease in mechanical loss factor were observed for 17.5 wt% composites at high processing temperature and not observed at low processing temperature. Processing at high temperature was found to improve the tensile modulus of composites but displayed diminished properties when processed at low processing temperature especially at high fiber content. At both low and high processing temperatures, the tensile strength and strain of the composite decreased with increased content of the fiber.  相似文献   

13.
The sliding friction and wear behavior of polytetrafluoroethylene (PTFE) composites filled with poly (phenyl p-hydroxybenzoate) (PHBA) and hexagonal boron nitride (h-BN) was investigated with a pin-on-disc tester. The tensile properties, ball indentation hardness, impact strength and thermal diffusivity were measured. The test results in this paper indicate that the tensile strength, elongation at break, and impact strength decreased, however, the ball indentation hardness and thermal diffusivity were increased when the content of h-BN was increased. PTFE composites filled with 20 wt% PHBA and 20 wt% h-BN exhibited a comparative friction coefficient to pure PTFE. Meantime, the wear rate of the composite decreased about 15 times compared to pure PTFE. The synergistic effect of h-BN with low friction and PHBA with high bearing ability promoted the low friction coefficient and wear rate of h-BN/PHBA/PTFE composites.  相似文献   

14.
The use of lubricant is the key of warm compaction technology. Because of admixed different lubricants, the optimal parameters of warm compaction process were also different. This paper investigated the effect of two kind of lubricants (zinc stearate and polystyrene) on the parameters of warm compaction process by compared properties of Cu-based composite. It was shown that with the rise of compacting pressure, the density and hardness of the Cu-based composite increased, but the resistivity and gaining weight reduced. With increasing compacting temperature, the density and hardness first increased and then decreased, but the trend of resistivity and gaining weight just reversed. For the samples admixed zinc stearate (ZS), the optimal admixed concentration was 0.4 wt%, and the sample prepared at 120 °C and 650 MPa had the highest density and hardness, the lowest resistivity and gaining weight. For the samples admixed polystyrene (PS), these parameters were 0.7 wt%, 140 °C and 650 MPa, respectively. The properties of samples admixed PS were superior to that of admixed ZS.  相似文献   

15.
In the present study effect of deflocculants like P-Aminobenzoic Acid (PABA) and Cetyltrimethyl ammonium bromide (CTAB) on densification and hardness of 3 mol.% Yttria-stabilized ZrO2 (abridged as YSZ) + Al2O3 (whiskers or particulates) composite have been studied. Maximum hardness & density were achieved at 1 wt% of CTAB or PABA, while further addition (5, 10 and 15 wt%) had no significant affect on the aforementioned properties. It was also observed that alumina addition in form of particulates only improved the density while its addition in form of whiskers significantly increased the hardness of YSZ + alumina composite. The maximum hardness achieved was more than 14 GPa in case of sample containing alumina in form of whiskers.  相似文献   

16.
Aluminum–silicon carbide composite (Al–SiCp) is one of the most promising metal matrix composites for their enhanced mechanical properties and wear resistance. In the present study, Al–SiC (average size 55 μm) composites with 5% and 10% by volume were fabricated by stir casting technique. The equal-channel angular pressing (ECAP) was then applied on the cast composites at room temperature in order to study the effect of ECAP passes on the SiCp size and distribution. The ECAP process was successfully carried out up to 12(8) passes for Al–5%(10%)SiC samples. Microstructure study revealed that the highest refinement by breakage of SiCp was achieved after the first ECAP pass and that further refinement took place in the next passes. More breakage of the SiCp was found in the composite richer in reinforcing particles so that the SiCp reached approximately 1 μm in the Al–10%SiC after 8 passes and 4 μm in Al–5%SiC after 12 ECAP passes. The distribution of SiC reinforcement particles also improved after applying ECAP. The factors including decrease in reinforcing particle size, improvement in their distribution, decrease in porosity in addition to strain hardening and grain refining of the matrix resulted in enhancement of tensile and compressive strengths as well as hardness by more than threefold for the Al–5%SiC after 12 passes and for Al–10%SiC after 8 passes compared to the cast composites. Additionally, the composite remained ductile after the ECAP process. The fracture surface indicated good bond between the matrix and the reinforcement.  相似文献   

17.
Low friction levels for brake materials dry sliding against Al matrix composites (Al-MMCs) were observed. Al matrix composites reinforced with 30 vol.% SiCp (34 μm) were used first to fabricate a new brake drum in place of the conventional cast iron brake drum for a Chase Machine. Experimental studies on the brake materials differing in amounts of zirconium silicate (0 wt%, 4 wt%, 8 wt%, and 12 wt% ZrSiO4) dry sliding against the Al-MMCs drum were performed on the Chase Machine in order to examine their effects on friction and wear performances. The test procedures include friction fade and recovery, load and speed sensitivities at 177 °C and 316 °C, and wear. Experimental results show that the brake material containing 8 wt% ZrSiO4 had the best wear resistance and higher friction level. The brake material containing 12 wt% ZrSiO4 had the highest friction level, but wear increased rapidly. The deterioration of the latter wear suggests that this brake material is unreliable in commercial applications.  相似文献   

18.
《Composites Part A》2007,38(2):301-306
Aluminum composites reinforced with CNTs were fabricated by pressureless infiltration process and the tribological properties of the composites were investigated. Al has been infiltrated into CNTs–Mg–Al preform by pressureless infiltration in N2 atmosphere at 800 °C. By means of scanning electron microscope (SEM) and energy dispersive X-ray spectrometer (EDS), it was found that CNTs are well dispersed and embedded in the Al matrix. The friction and wear behaviors of the composite were investigated using a pin-on-disk wear tester under unlubricated condition. The tests were conducted at a sliding speed of 0.1571 m/s under an applied load of 30 N. The experimental results indicated that the friction coefficient of the composite decreased with increasing the volume fraction of CNTs due to the self-lubrication and unique topological structure of CNTs. Within the range of CNTs volume fraction from 0% to 20%, the wear rate of the composite decreased steadily with the increase of CNTs content in the composite. The favorable effects of CNTs on wear resistance are attributed to their excellent mechanical properties, being well dispersed in the composite and the efficiency of the reinforcement of CNTs.  相似文献   

19.
A metal matrix composite has been obtained by a novel synthesis route, reacting Al3Ti and graphite at 1000 °C for about 1 min after ball-milling and compaction. The resulting composite is made of an aluminium matrix reinforced by nanometer sized TiC particles (average diameter 70 nm). The average TiC/Al ratio is 34.6 wt.% (22.3 vol.%). The microstructure consists of an intimate mixture of two domains, an unreinforced domain made of the Al solid solution with a low TiC reinforcement content, and a reinforced domain. This composite exhibits uncommon mechanical properties with regard to previous micrometer sized Al–TiC composites and to its high reinforcement volume fraction, with a Young’s modulus of ∼110 GPa, an ultimate tensile strength of about 500 MPa and a maximum elongation of 6%.  相似文献   

20.
The influence of oxygen content on the properties of cathodic arc-deposited AlCr(OxN1?x) coatings has been studied. All samples were prepared in a nitrogen-rich mixture of N2 and O2 at 550 °C using lateral rotating arc cathodes (LARC) technology together with a pulsed bias voltage. The obtained coatings were characterized by various techniques including XRD, EPMA, TEM, pin-on-disk wear tests and nanoindentation. The results obtained allow to classify the coatings into three groups with respect to their microstructure, mechanical properties and oxygen content, x. For the first group of samples with x  0.6, single-phase films of (Al,Cr)OxN1-x with fcc lattice were obtained, with well-developed columnar structure and a hardness of 30 to 33 GPa. In the second group, a diffuse columnar structure was observed while the fcc lattice was still present despite the large proportion of oxygen, 0.6 < x  0.97, and the observed hardness decreased to 25 GPa. No amorphous phase was detected in this group as confirmed by TEM. The simulation of XRD patterns of nitride lattices with oxygen incorporation allowed to suggest the formation of cation vacancies in the structure of the investigated oxynitride coatings. The third group is formed by coatings with x > 0.97, where a well-crystalline α-(Al,Cr)2O3 corundum phase was observed and the hardness increased again to 28 GPa. Our results indicate that the second group of coatings is metastable and after heat treatment transforms to a composite of cubic oxynitride and corundum oxide. Both friction and wear of samples from the entire investigated compositional range were studied at room temperature and 600 °C. The low wear rates observed for the oxynitride coatings underline their potential for use in turning and milling applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号