首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cu-coatedwoven carbon fibers/aluminum alloy composite (Cf/Al) was prepared by spark plasma sintering. Microstructure and mechanical properties of the composite were investigated. Microstructure observation indicates that the interface reaction is evidently inhibited by Cu coating. Woven carbon fibers are adhered to the matrix alloy by anchor locking effect of matrix alloy immersing into the interstices between carbon fibers. Under the quasi-static and dynamic compressive conditions, the composite exhibits excellent ductility even when the strain reaches 0.8. Adding carbon fibers into ZL205A alloy has no obvious influence on compressive flow stress of the composite. The compressive true stress–true strain curves show that the composite is a strain rate insensitive material. During the tensile tests, the elongation of the composite shows a sharp increase from 4.5% to 13.5% due to the adding of woven carbon fibers. Meanwhile, the tensile strength of the composite is increased slightly from 168 MPa to 202 MPa compared to that of ZL205A alloy. The good ductility of the composite is ascribed to the cracks deflection, fibers pulling out, debonding and breakage mechanisms.  相似文献   

2.
The axisymmetric cell model consisting of interface, matrix and reinforced particle is used to simulate the tensile test of particle reinforced metal matrix composite for predicting the micro stress/strain field and macro tensile stress/strain curve. In simulation of the tensile test, the cohesive element model is selected to model interfacial crack growth. It mainly analyzed the effects of interfacial properties, reinforcement volume fractions and aspect ratios on the stress–strain states of particle reinforced metal matrix composite. The results show that the peak micro stress and plastic strain occur at the interface in which it is a certain angle from the tensile stress direction; with the interfacial fracture toughness and reinforcement volume fraction increasing, the flow stress increases firstly and then decreases. The tensile stress–strain properties of SiC/6064Al are good when the interfacial fracture toughness is equal to 60 J/m and the reinforcement fraction volume is equal to 20%. Smaller reinforcement aspect ratio leads to smaller micro stress in composites.  相似文献   

3.
Friction stir butt welding of titanium alloy Ti6Al4V and aluminum alloy A6061-T6 with 2 mm thickness was conducted by offsetting probe edge into the titanium alloy at rotation speed of 750 rpm and 1000 rpm and welding speed of 120 mm/min. The effect of probe offset distance on the interfacial microstructure and mechanical properties of the butt joint was investigated. When the probe offset distance is not sufficient, the two alloys cannot be completely joined together, i.e. there exists no bonding or kissing bonding at the root part of joint interface. However, when the probe offset distance is too large, a great amount of intermetallic compounds are formed at the joint interface and its adjacency, leading to fracturing roughly along the joint interface during a tensile test. In a proper range of probe offset distance, sound dissimilar butt joints are produced, which have comparatively high tensile strength and fracture in heat affected zone of the aluminum alloy during a tensile test.  相似文献   

4.
The objective of this study is to develop a hot diffusion-compression bonding process for cladding low carbon steel (LCS) to high chromium cast iron (HCCI) in solid-state. The influence of temperature (950–1150 °C) and strain rate (0.001–1 s−1) on microstructure, hardness and bond strength of the HCCI/LCS bimetal were investigated. The interface microstructure reveals that the unbonded region can only be found for 950 °C due to lack of diffusion, while the intergrowth between the constituent metals occurred at and above 1100 °C. When bonding temperature increases to 1150 °C, a carbide-free zone was observed near the interface on the HCCI layer, and the thickness of the zone decreases with an increase of bonding strain rate. These evolutions indicate that the bond quality was improved by raising temperature and reducing strain rate due to the increase of element diffusion. The hot compression process of the bonding treatment not only changes the carbide orientation of the HCCI, but also increases the volume fraction of Cr–carbide. Based on the microstructural examinations and mechanical tests, the optimum bonding temperature and bonding strain rate are determined to be 1150 °C and 0.001 s−1, respectively.  相似文献   

5.
The theory of plane strain compression is applied to rolled aluminium alloy sheet. Two contrasting grades of the alloy are tested: naturally aged AC 120 and half-hard HE 30. While AC 120 displays a smooth stress–strain curve under homogenous straining, HE30 shows a serrated stress–strain curve due to its banded plastic strain behaviour. It is shown that, provided the r-values can be established reliably to characterise each sheet’s orthotropy, a flow curve to large strain (≃2) is provided by the plane strain test. Certain modifications to the original test procedure are made to achieve this. Equivalence in flow curves, as required of orthotropic plasticity theory, is examined from plane strain, bulge forming and tension tests conducted at various orientations to the roll. Despite the contrasting limiting strains between the three tests (tension  0.1, bulge forming  0.8) an acceptable correlation has been found between their equivalent flow curves across three decades of strain. The dependence of equivalent plastic strain upon equivalent stress for each material conforms to the Hollomon law. The Ramberg–Osgood law allows for the addition of elastic strain.  相似文献   

6.
Joining cubic boron nitride (CBN) abrasive grains and tool body made of steel using brazing always creates residual stress due to thermal mismatch of the components when cooling down from the brazing temperature. A large tensile stress perhaps causes grain fracture during the grinding process with single-layer brazed CBN abrasive tools. To evaluate the residual stresses occurring in brazed CBN grains, values and distribution of residual stresses are calculated using the finite element method. Effects of bonding materials, embedding depth, gap thickness and grain size on brazing-induced residual stresses are discussed. Results show that the Cu–Sn–Ti bonding alloy always results in a larger tensile stress in the CBN grains, when compared to Ag–Cu–Ti alloy during the cooling phase of the brazing process. The maximum tensile stress is obtained at the grain–bond junction region irrespective of the choice of bonding material and embedding depth. When the grain side length is 100 μm, gap thickness is 10 μm and grain embedding depth is 30%, the maximum magnitude of the tensile stresses is obtained. The maximum stress is 401 MPa with Ag–Cu–Ti alloy and 421 MPa with Cu–Sn–Ti alloy. The brazing-induced residual stresses have been finally measured experimentally by means of the Raman spectroscopy. The current simulated results are accordingly verified valid.  相似文献   

7.
The present study describes the course of microstructure evolution during accumulative roll bonding (ARB) of dissimilar aluminum alloys AA2219 and AA5086. The two alloys were sandwiched as alternate layers and rolled at 300 °C up to 8 passes with 50% height reduction per pass. A strong bonding between successive layers accompanied by substantial grain refinement (∼200–300 nm) is achieved after 8 passes of ARB. The processing schedule has successfully maintained the iso-strain condition up to 6 cycles between the two alloys. Afterwards, the fracture and fragmentation of AA5086 layers dominate the microstructure evolution. Mechanical properties of the 8 pas ARB processed material were evaluated in comparison to the two starting alloy sheets via room temperature tensile tests along the rolling direction. The strength of the 8 pass ARB processed material lies between that of the two starting alloys while the ductility decreases after ARB than that of the two constituent starting alloys. These differences in mechanical behavior have been attributed to the microstructural aspects of the individual layer and the fragmentation process.  相似文献   

8.
Transient Liquid Phase (TLP) bonding of two dissimilar alloys Al7075 and Ti–6Al–4V has been done at 500 °C under 5 × 10−4 torr. Cu was electrodeposited on Al7075 and Ti–6Al–4V surfaces, 50 μm thick Sn–4Ag–3.5Bi film was used as interlayer and bonding process was carried out at several bonding times. The microstructure of the diffusion bonded joints was evaluated by Light Optical Microscopy (LOM), Scanning Electron Microscopy (SEM) and Energy Dispersive Spectroscopy (EDS). The eutectic and intermetallic compounds formation along Al7075 grain boundaries and Ti/Al interface such as θ(Al2Cu), TiAl and Ti3Al were responsible for joint formation at the aluminum and titanium interfaces. Microhardness and shear strength tests were used to investigate the mechanical properties of the bonds. Hardness of the joints increased with increasing bonding time which can be attributed to the intermetallics formation at the interface. The study showed that the highest bond strength was 36 MPa which was obtained for the samples joined for 60 min.  相似文献   

9.
Organic-coated aluminum nano-powders were consolidated by spark plasma sintering technique with low initial pressure of 1 MPa and high holding pressure of 300 MPa at different sintering temperature. The effect of sintering temperature on microstructures and mechanical properties of the compact bulks was investigated. The results indicate that both the density and the strain of the nanocrystalline aluminum increase with an increase in sintering temperature. However, the micro-hardness, compressive strength and tensile stress of the compact bulks increase initially and then decrease with increasing sintering temperature. The nanocrystalline aluminum sintered at 773 K has the highest micro-hardness of 3.06 GPa, the best compressive strength of 665 MPa and the supreme tensile stress of 282 MPa. A rapid grain growth of nanocrystalline aluminum sintered at 823 K leads to a decrease in micro-hardness, compressive strength and tensile stress. After annealing, a remarkable increase in strain and a slight rise in strength were obtained due to the relief of the residual stress in nanocrystalline Al and the formation of composite structure.  相似文献   

10.
Friction stir spot welding (FSSW) is a newly-developed solid state joining technology. In this study, two types of FSSW, normal FSSW and walking FSSW, are applied to join the 5052-H112 aluminum alloy sheets with 1 mm thickness and then the effect of the rotational speed and dwell time on microstructure and mechanical properties is discussed. The lower sheet material underneath the hook didn’t flow into the upper sheet due to the concave surface in the shoulder and groove in the anvil. The hardness profile of the welds exhibited a W-shaped appearance and the minimum hardness was measured in the HAZ. The results of tensile/shear tests and cross-tension tests indicate that the joint strength decreases with increasing rotational speed, while it’s not affected significantly by dwell time. At the rotational speed of 1541 rpm, the tensile/shear strength and cross-tension strength reached the maximum of 2847.7 N and 902.1 N corresponding to the dwell time of 5 s and 15 s. Two different fracture modes were observed under both tensile/shear and cross-tension loadings: shear fracture and tensile/shear mixed fracture under tensile/shear loadings, and nugget debonding and pull-out under cross-tension loadings. The performance of the welds plays a predominant role in determining the type of fracture modes. In addition, the adoption of walking FSSW brings unremarkable improvements in weld strength.  相似文献   

11.
A new manufacturing process for metal matrix composites has been invented, namely accumulative press bonding (APB). The APB process provided an effective method to produce bulk Al/10 vol.% WCp composite using tungsten carbide (WC) powder and AA1050 aluminum sheets as the raw materials. The microstructural evolutions and mechanical properties of the monolithic aluminum and Al/WCp composite during various APB cycles were examined by scanning electron microscopy, X-ray diffractometry, X’pert HighScore software, and tensile test equipment. The results revealed that by increasing the number of APB cycles (a) the uniformity of WC particles in aluminum matrix improved, (b) the porosity of the composite eliminated, (c) the particle free zones decreased and (d) the cluster characteristics improved. Hence, the final Al/WCp composite processed by 14 APB cycles showed a uniform distribution of WCp throughout the aluminum matrix, strong bonding between particles and matrix, and a microstructure without any porosity and undesirable phases. The X-ray diffraction results also showed that nanostructured Al/WCp composite with the average crystallite size of 58.4 nm was successfully achieved by employing 14 cycles of APB technique. The tensile strength of the composites enhanced by increasing the number of APB cycles, and reached to a maximum value of 216 MPa at the end of 14th cycle, which is 2.45 and 1.2 times higher than obtained values for annealed (raw material, 88 MPa) and 14 cycles APBed monolithic aluminum (180 MPa), respectively. Though the elongation of Al/WCp composite lessened during the initial cycles of APB process, it increased at the final cycles of the mentioned process by 78%. Role of WC particles, uniformity of reinforcement, porosity, bonding quality of the reinforcement and matrix, grain refinement, and strain hardening were considered as the strengthening mechanisms in the manufactured composites.  相似文献   

12.
The high temperature impact properties and microstructural evolution of 6061-T6 aluminum alloy are investigated at temperatures ranging from 100 to 350 °C and strain rates ranging from 1 × 103 to 5 × 103 s−1 using a compressive split-Hopkinson pressure bar (SHPB) system. It is found that the flow response and microstructural characteristics of 6061-T6 aluminum alloy are significantly dependent on the strain rate and temperature. The flow stress and strain rate sensitivity increase with increasing strain rate or decreasing temperature. Moreover, the temperature sensitivity increases with both increasing strain rate and increasing temperature. The flow stress–strain response of the present 6061-T6 alloy specimens can be adequately described by the Zerilli–Armstrong fcc model. The grain size and dislocation cell size increase significantly with a decreasing strain rate or an increasing temperature. The higher flow stress is the result of a smaller grain size and smaller dislocation cell size. The stacking fault energy of the deformed specimens has a value of 145.78 mJ/m2.  相似文献   

13.
The tensile creep behavior of an oxide–oxide continuous fiber ceramic composite was investigated at 1000 and 1100 °C in laboratory air and in steam. The composite consists of a porous alumina–mullite matrix reinforced with laminated, woven mullite/alumina (Nextel?720) fibers, has no interface between the fiber and matrix, and relies on the porous matrix for flaw tolerance. The tensile stress–strain behavior was investigated and the tensile properties measured. Tensile creep behavior was examined for creep stresses in the 70–140 MPa range. The presence of steam accelerated creep rates and dramatically reduced creep lifetimes. The degrading effects of steam become more pronounced with increasing temperature. At 1000 °C, creep run-out (set to 100 h) was achieved in all tests. At 1100 °C, creep run-out was achieved in all tests in air and only in the 87.5 MPa test in steam. Composite microstructure, as well as damage and failure mechanisms were investigated.  相似文献   

14.
This paper is concerned with tensile characteristics of auto grade low carbon, ultra low carbon and micro alloyed steel sheets under low to intermediate strain rates ranging from 0.0007 to 250 s−1. Experimental investigation reveals two important aspects of these steels under intermediate strain rate deformation. Firstly, the yield stress increases with strain rate in all these steels. Of course yield stress increment is higher for low carbon and ultra low carbon steel sheets. Secondly, the strain hardening rate drastically decreases with strain rate for low carbon and ultra low carbon steel sheets, whereas it remains steady for micro alloyed steel sheets. Based on these observations, a constitutive model has been proposed which predicts the strain rate sensitive flow behavior of all these grades within the strain rate range of automotive crash event.  相似文献   

15.
Dissimilar metals of AA6013 aluminum alloy and Q235 low-carbon steel of 2.5 mm thickness were butt joined using a 10 kW fiber laser welding system with ER4043 filler metal. The study indicates that it is feasible to join aluminum alloy to steel by butt joints when zinc layer was hot-dip galvanized at the steel’s groove face in advance, and better weld appearance can be obtained at appropriate welding parameters. The joints had dual characteristics of a welding joint on the aluminum side and a brazing joint on the steel side. The smooth Fe2Al5 layer adjacent to the steel matrix and the serrated-shape FeAl3 layer close to the weld metal were formed at the brazing interface. The overall thickness of Fe–Al intermetallic compounds layers produced in this experiment were varied from 1.8 μm to 6.2 μm at various welding parameters with laser power of 2.85–3.05 kW and wire feed speed of 5–7 m/min. The Al/steel butt joints were failed at the brazing interface during the tensile test and reached the maximum tensile strength of 120 MPa.  相似文献   

16.
The hot tensile deformation behaviors of 42CrMo steel are studied by uniaxial tensile tests with the temperature range of 850–1100 °C and strain rate range of 0.1–0.0001 s−1. The effects of hot forming process parameters (strain rate and deformation temperature) on the elongation to fracture, strain rate sensitivity and fracture characteristics are analyzed. The constitutive equation is established to predict the peak stress under elevated temperatures. It is found that the flow stress firstly increases to a peak value and then decreases, showing a dynamic flow softening. This is mainly attributed to the dynamic recrystallization and material damage during the hot tensile deformation. The deformation temperature corresponding to the maximum elongation to fracture increases with the increase of strain rate within the studied strain rate range. Under the strain rate range of 0.1–0.001 s−1, the localized necking causes the final fracture of specimens. While when the strain rate is 0.0001 s−1, the gage segment of specimens maintains the uniform macroscopic deformation. The damage degree induced by cavities becomes more and more serious with the increase of the deformation temperature. Additionally, the peak stresses predicted by the proposed model well agree with the measured results.  相似文献   

17.
The incorporation of graphite particles into AA6016 aluminum alloy matrix to fabricate metal/ceramic composites is still a great challenge and various parameters should be considered. In this study, dense AA6016 aluminum alloy/(0-20 wt%) graphite composites have successfully been fabricated by powder metallurgy process. At first, the mixed aluminum and graphite powders were cold compacted at 200 MPa and then sintered at 500 ℃ for 1 h followed by hot extrusion at 450 ℃. The influence of ceramic phases(free graphite and in-situ formed carbides) on microstructure, physical and mechanical properties of the produced composites were finally investigated. The results show that the fabricated composites have a relative density of over 98%. SEM observations indicate that the graphite has a good dispersion in the alloy matrix even at high graphite content. Hardness of all the produced composites was higher than that of aluminum alloy matrix. No cracks were observed at strain less than 23% for all hot extruded materials.Compressive strength, reduction in height, ultimate tensile stress, fracture stress, yield stress, and fracture strain of all Al/graphite composites were determined by high precision second order equations. Both compressive and ultimate tensile strengths have been correlated to microstructure constituents with focusing on the in-situ formed ceramic phases, silicon carbide(SiC) and aluminum carbide(Al_4 C_3). The ductile fracture mode of the produced composites became less dominant with increasing free graphite content and in-situ formed carbides. Wear resistance of Al/graphite composites was increased with increasing graphite content. Aluminum/20 wt% graphite composite exhibited superior wear resistance over that of AA6016 aluminum alloy.  相似文献   

18.
The tensile deformation behavior of spray deposited FVS0812 heat-resistant aluminum alloy sheet was studied by uniaxial tension tests at temperatures ranging from 250 °C to 450 °C and strain rates from 0.001 to 0.1 s 1. The associated fracture surfaces were examined by scanning electron microscopy (SEM). The results show that the degree of work-hardening increases with decreasing temperature, and exhibits a small decrease with increasing strain rate; the strain rate sensitivity exponent increases with increasing temperature. The flow stress increases with increasing strain rate but decreases with increasing temperature. The total elongations to fracture increase not only with increasing temperature, but also with increasing strain rate, which is in marked contrast with the normal inverse dependence of elongation on the strain rate exhibited by conventional aluminum alloy sheets. The SEM fracture analysis indicates that the dependence of elongation on the strain rate may be due to the presence of a transition from plastic instability at lower strain rates to stable deformation at higher strain rates for fine-grained materials produced by spray deposition.  相似文献   

19.
Friction spot welding (FSpW) is a relatively new solid state joining technology developed by GKSS. In the present study, FSpW was applied to join the 6061-T4 aluminum alloy sheet with 2 mm thickness. The microstructure of the weld can be classified into four regions, which are stir zone (SZ), thermo-mechanically affected zone (TMAZ), heat affected zone (HAZ) and the base material (BM), respectively. Meanwhile, defects such as bonding ligament, hook and voids are found in the weld, which are associated to the material flow. The hardness profile of the weld exhibits a W-shaped appearance and the minimum hardness is measured at the boundary of TMAZ and SZ. Both the tensile/shear strength and cross-tension strength reach the maximum of 7117.0 N and 4555.4 N at the welding condition of the rotational speed of 1500 rpm and duration time of 4 s. Compared to cross-tension strength, the tensile/shear strength were stable with the variation of processing parameters. Three different fracture modes are observed under tensile/shear loading, which are plug type fracture, shear fracture and plug-shear fracture. There are also there different fracture modes under cross-tension loading, which are plug type fracture (on the upper sheet), nugget debonding and plug type fracture (on the lower sheet).  相似文献   

20.
TLP diffusion bonding of two dissimilar aerospace alloys, Ti–6Al–4V and Al7075, was carried out at 500 °C using 22 μm thick Cu interlayers for various bonding times. Joint formation was attributed to the solid-state diffusion of Cu into the Ti alloy and Al7075 alloy followed by eutectic formation and isothermal solidification along the Cu/Al7075 interface. Examination of the joint region using SEM, EDS and XPS showed the formation of eutectic phases such as, ?(Al2Cu), T(Al2Mg3Zn3) and Al13Fe along grain boundaries within the Al7075 matrix. At the Cu/Ti alloy bond interface a solid-state bond formed resulting in a Cu3Ti2 phase formation along this interface. The joint region homogenized with increasing bonding time and gave the highest bond strength of 19.5 MPa after a bonding time of 30 min.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号