首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
In this work, the compatibilization of blends of plasticized polyvinyl chloride (PVC) and polystyrene (PS) with poly(styrene‐con‐methylolacrylamide) (PSnMA) was investigated. The PSnMA was synthesized by emulsion polymerization with different amounts of n‐methylolacrylamide (nMA). Particle size and phase behavior was determined by scanning electron microscopy, and mechanical properties were determined in an Universal Testing Machine. Micrographs revealed that an appreciable size reduction of the dispersed phase was achieved when small amounts of PSnMA were added to the blend, and as the amount of nMA was increased, particle size decreased. When the (PVC/PS/PSnMA) blend was subjected to solvent extraction to remove PS and unreacted PVC, the residue showed a single Tg. Tensile modulus and the ultimate strength of the blends increased with PSnMA content. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

2.
Five kinds of polyepichlorohydrin (PECH) of different molecular weights were synthesized and characterized by gel permeation chromatography (GPC). Mechanical blending was used to mix PECH and poly(vinyl chloride) (PVC) together. The blends of different PVC/PECH ratios were characterized by thermogravimetric analysis (TGA), tensile tests, differential scanning calorimetry (DSC), and dynamic mechanical analysis (DMA). TGA results show the thermal stability of PVC/PECH blends is desirable. Tensile tests indicate elongation at break is raised by increasing both the amount and the molecular weight of PECH. DSC is used to determine the glass transition temperature of PECH, and a quite low Tg is obtained. DMA results indicate that PECH has a perfect compatibility with PVC, when PECH concentration is below 20 wt %. There is only one peak in each tan δ curve, and the corresponding Tg decreases as PECH amount increases. However, above 20 wt %, phase separation takes place. The molecular weight of PECH also has a great influence on the glass transition temperature of the blends. This study shows that PECH is an excellent plasticizer for PVC, and one can tailor the glass transition temperature and tensile properties by changing the amount and the molecular weight of PECH. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

3.
The relationship between synthesis factors and the impact resistance of high impact polystyrene (HIPS) is investigated in the light of its morphology and dynamic mechanical properties. A decrease in polymerization temperature results in an increase in Tg, melt viscosity and molecular weight of the continuous polystyrene phase as characterized by gel permeation chromatography. The separated, occluded polystyrene phase however shows an invariant Tg suggesting that the grafting and/or crosslinking effect overweighs the molecular weight effect. The observed high impact strength has been correlated with the homogeneous 1-2 μ rubber particle size distribution, a comparatively sharp rubber Tg transition at lower temperature, and a much lower occluded polystyrene content in the dispersed phase.  相似文献   

4.
Composition, shape factor, size, and fractal dimension of soot aerosol particles generated in a propane/O2, flame were determined as a function of the fuel equivalence ratio (φ). Soot particles were first size-selected by a differential mobility analyzer (DMA) and then analyzed by an Aerodyne aerosol mass spectrometer (AMS). The DMA provides particles of known mobility diameter (dm ). The AMS quantitatively measures the mass spectrum of the nonrefractory components of the particles and also provides the vacuum aerodynamic diam eter (dva ) corresponding to the particles of known mobility diameter. The measured dm, dva , and nonrefractory composition are used in a system of equations based on the formulation presented in the companion article to estimate the particle dynamic shape factor, total mass, and black carbon (BC) content. Fractal dimension was estimated based on the mass-mobility relationship. Two types of soot particles were observed depending on the fuel equivalence ratio. Type 1: for φ < 4 (lower propane/O2), dva ; was nearly constant and independent of dm . The value of dva increased with increasing φ. Analysis of the governing equations showed that these particles were highly irregular (likely fractal aggregates), with a dynamic shape factor that increased with dm and φ. The fractal dimension of these particles was approximately 1.7. These particles were composed mostly of BC, with the organic carbon content increasing as φ increased. At φ = 1.85, the particles were about 90% BC, 5% PAH, and 5% aliphatic hydrocarbon (particle density = 1.80 g/cm3). Type 2: for φ > 4 (high propane/O2), dva was linearly proportional to dm . Analysis of the governing equations showed that these particles were nearly spherical (likely compact aggregates), with a dynamic shape factor of 1.1 (versus 1 for a sphere) and a fr actal dimension of 2.95 (3 for a sphere). These particles were composed of about 50% PAH, 45% BC, and 5% aliphatic hydrocarbons (particle density = 1.50 g/cm3). These results help interpret some measurement s obtained in recent field studies.  相似文献   

5.
In attempt to enhance the compatibility of PET/LDPE blends by using a proper functionalized polymer as third component, diethyl maleate (DEM)‐functionalized ultralow density poly(ethylene) (ULDPE‐g‐DEM) and styrene‐b‐(ethylene‐co‐1‐butene)‐b‐styrene triblock copolymer (SEBS‐g‐DEM) were prepared by radical functionalization in the melt. Immiscible PET/LDPE blends having compositions of 70/30 and 80/20 by weight were then extruded in the presence of 1–10% by weight of ULDPE‐g‐DEM and SEBS‐g‐DEM as compatibilizer precursors and ZnO (0.3% by weight) as transesterification catalyst. In both cases, evidences about the occurring of compatibilization between the two immiscible phases, thanks to the studied reactive processes, were obtained. Moreover, the phase distribution and particle size of blends were deeply investigated. Completely different kinds of phase morphology were achieved, as ULDPE‐g‐DEM stabilized a dispersed phase morphology, whereas SEBS‐g‐DEM favored the development of a cocontinuous phase morphology. The observed differences are tentatively explained onthe basis of reactivity and physical features of polymers. POLYM. ENG. SCI., 2008. © 2008 Society of Plastics Engineers.  相似文献   

6.
Styrene‐EPDM‐acrylonitrile tripolymer (EPDM‐g‐SAN) was synthesized by the graft copolymerization of styrene (St) and acrylonitrile (An) onto ethylene‐propylene‐diene terpolymer (EPDM) with “phase inversion” emulsification technique. The high impact strength engineering plastics AES was the blend of SAN resin and EPDM‐g‐SAN, which occupied good weathering and yellow discoloration resistivity. The effects of An percentage in comonomer and the weight proportion of EPDM to St‐An on graft copolymerization behavior and AES notched impact strength were studied. The results showed that monomer conversion ratio (CR) exhibited a peak when the An percentage changed, and the maximum value was 97.5%. Grafting ratio (GR) and grafting efficiency (GE) enhance as well. The notched impact strength of AES presented a peak with the maximum value of 53.0 KJ/m2, when An percentage was at the range of 35–40%. The spectra of FTIR showed that St and An were graft onto the EPDM. DSC analysis illuminated that Tg of EPDM phase in the blends was lower than that of the pure EPDM. TEM and SEM micrographs indicated that the polarity of g‐SAN of EPDM‐g‐SAN was the main factor effect the particle morphology, in terms of size, distribution and isotropy. When weight ratio of St to An was 65/35, the polarity of g‐SAN chains was appropriate, and the EPDM‐g‐SAN particles dispersed well in the SAN matrix. The super impact toughness is interpreted in terms of EPDM phase cavitation and enhanced plastic shear yielding. The highest toughness occurs at an optimum EPDM‐g‐SAN phase particle size which is about 0.2 μm in SAN resin matrix. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

7.
Miscible polychloroprene/polyvinyl chloride (CR/PVC) blends with nitrile butadiene rubber (NBR) as a compatibilizer were prepared. The effect of NBR on the compatibility between CR and PVC was mainly analyzed by studying the thermal behavior and the phase structure of CR/PVC blends. An obvious decrement in the Tg of PVC phase successfully provided an explanation for the compatibilization of NBR. Due to the improved compatibility between CR and PVC, the size of PVC particles in CR/PVC blends decreased a lot according to the scanning electronic microscopic images. The significant improvement of mechanical properties of CR/PVC blends was in good agreement with the better compatibility between CR and PVC phases. The softening effect of NBR on the nonlinear viscoelasticity of CR/PVC blends was also studied by RPA 2000. Temperature sweep test by RPA 2000, a less reported characterization method of Tg, was successfully applied to measure Tg of CR/PVC blends and study the compatibilization of NBR. The reason for better thermal stability and the thermal decomposition mechanism of CR/PVC blends were analyzed according to the results of TGA. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42448.  相似文献   

8.
The glass-transition temperatures (Tg's) and specific heats (Cp) of poly(vinyl chloride) (PVC) and PVC plasticized with 5–120 phr di(2-ethylhexyl) adipate (DOA) and tri(2-ethylhexyl) trimellitate (TOTM) have been determined by differential scanning calorimetry (DSC). Measured Tg's were compared to predictions by the Couchman and Karasz (C–K) thermodynamic theory, three related empirical equations, and a new equation obtained from the C–K relation by assuming the product TgΔCp to be constant. It was found that the Tg's of the PVC/TOTM mixtures are adequately predicted only by the C–K and the derivative relation. The Tg's of the PVC/DOA mixtures follow a sigmoidal or cusp-like dependence on plasticizer composition as has been observed for some other PVC/plasticizer mixtures. In this case, the approximation afforded by the C–K or derivative equations is still superior to the empirical models over a wide composition range. Dynamic mechanical analysis of the PVC/DOA mixtures suggests that the DSC transitions may consist of two overlapping phase transitions. The reported sigmoidal composition dependence of the DSC Tg's may therefore result from the measured Tg's being weighted towards the temperature corresponding to the predominant dynamic mechanical transition (i.e., the high Tg phase at low plasticizer concentrations and the low Tg phase at high plasticizer concentrations). In such cases of partial phase separation, the C–K or the derivative equation may be used to estimate the composition of the two phases at each overall plasticizer concentration.  相似文献   

9.
Gel permeation chromatography (GPC) and solid‐state 13C‐NMR techniques were used to analyze the structural changes of poly(vinyl chloride) (PVC) in blends of a low‐density polyethylene (LDPE) and PVC during melt blending. The GPC results showed that the weight‐average molecular weight (Mw) of PVC increased with LDPE content up to 13.0 wt % and then decreased at a LDPE content of 16.7 wt %, whereas the number‐average molecular weight remained unchanged for all of LDPE contents used. The 13C‐NMR results suggest that the increase in Mw was associated with the formation of a LDPE‐g‐PVC structure, resulting from a PVC and LDPE macroradical cross‐recombination reaction during melt blending. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 3167–3172, 2004  相似文献   

10.
A novel grafted polymer was prepared in one step through free‐radical melt grafting in a single‐screw extruder. It was shown that the addition of styrene (St) to the melt‐grafting system as a comonomer could significantly enhance the grafting degree of methyl methacrylate (MMA) onto polypropylene (PP) and reduce the degradation of the PP matrix by means of Fourier transform infrared and melt flow rate testing, respectively. Then, the potential of using multimonomer‐grafted PP, which was designated PP‐g‐(St‐co‐MMA), as the compatibilizer in PP/poly(vinyl chloride) (PVC) blends was also examined. In comparison with PP/PVC blends, the average size of the dispersed phase was greatly reduced in grafted polypropylene (gPP)/PVC blends because of the addition of the PP‐g‐(St‐co‐MMA) graft copolymer. The tensile strength of the gPP/PVC blends increased significantly, and the impact strength was unchanged from that of the pure PP/PVC blends. The results of differential scanning calorimetry and scanning electron microscopy suggested that the compatibility of the PP/PVC blends was improved. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

11.
Blends of poly(vinyl chloride) (PVC) and poly(hexane succinate) (PHS) with various molecular weights were analyzed with respect to their mechanical properties, durability, and thermal stability. We found that the molecular weight of PHS played an important role in the plasticizing process, and the single glass-transition temperature (T g) of the PVC blends measured by dynamic mechanical analysis supported the complete miscibility between PHS and PVC. The plasticizing efficiency of PHS increased as the molecular weight increased; this reflected the gradually increasing elongation at break and the decreased T g of the PVC blend. Meanwhile, the higher molecular weight of PHS also improved the resistance of migration and thermal stability but decreased the biodegradability of the PVC blends; this was due to the strong intermolecular interactions between PHS and PVC. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47081.  相似文献   

12.
Miniemulsification technology was used to encapsulate TiO2 particles inside a styrene/n‐butyl acrylate copolymer with high loading levels (11 to 70% PVC (pigment volume concentration)). In this approach, a St/BA copolymer dissolved in toluene in the presence of a costabilizer (hexadecane) was mixed with a dispersion of TiO2 particles in toluene and sonified, and then emulsified in an aqueous surfactant solution by sonification. The effect of sonification time on both the dispersibility of the TiO2 particles in the presence of the copolymer and hexadecane and on the encapsulated particle size was investigated. Particle size analysis by dynamic light scattering showed that these composite latexes are quite stable. It was also found that as the TiO2 loading increased from 11 to 43% PVC, the particle size of the TiO2 dispersion decreased while the polymer‐encapsulated TiO2 particle size increased. The effect of surfactant concentration (sodium lauryl sulfate, SLS) on the encapsulated particle size was investigated using four different SLS concentrations in the 11% PVC system. The results showed that as the SLS concentration increased the particle size decreased, as expected. Also it was found that the minimum surfactant concentration that gives stable encapsulated TiO2 particles is above 10 mM SLS. The role of HD in the recipe was studied for an artificial latex containing no TiO2 and one prepared at 11% PVC, in terms of particle size before and after solvent stripping, and its effect on the Tg. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 4504–4516, 2006  相似文献   

13.
The nature of phase mixing in semi-interpenetrating polymer networks (SIPNs) of poly(vinyl chloride) (PVC)/thermoset blends was studied by using both the glass transition temperature third power composition equation and DMTA modeling. From 5% to 15% by weight of an oligomeric MDI isocyanate or a low viscosity epoxy were blended separately with PVC to make two series of SIPNs. The DMTA-derived Tg data were modeled by the Tg third power composition equation to characterize “energy interaction” features of PVC/thermoset phase mixing. Fitting experimental Tg values gave estimations of the characteristic parameters, K1 and K2 of the Tg power equation. K1 and K2 were each positive for the PVC/epoxy (K1 = 1.1, K2 = 7.2) and the PVC/isocyanate (K1 = 29.9, K2 = 38) blends, showing that binary hetero-interactions (enthalpic effects) and conformational redistributions (entropic effects) during the binary hetero-interactions both contributed favorably to phase mixing. Negative K1 - K2 values for both groups of blends indicate entropic contributions predominate. The thermoset dilution produced a lightly crosslinked thermoset network, which was locked into the amorphous PVC, forming a mixed thermoset/PVC SIPN domain. Conformational redistributions of PVC and thermoset segments continue to occur within the developing SIPN domain before phase separation can occur. The combined series-parallel Takayanagi coupling model, which assumed that a PVC phase and a mixed PVC/thermoset SIPN phase coexisted, was employed to describe the viscoelastic behavior of PVC/thermoset blends. Reasonable fits between the experimental DMTA plots and modeling predictions were found. The predictions were not sensitive to the degree of series-parallel coupling. The modeled DMTA plots, like the experimental results, exhibited only a single E″ peak in the glass transition temperature range for both the PVC/PAPI and PVC/epoxy systems. Thus, very small PVC/thermoset SIPN domains (< 20 nm diameter) that are dispersed in separate domains of a PVC-rich phase (despersive phase mixing characteristics) provide a reasonable explanation of the blends' phase structures.  相似文献   

14.
A new type of rigid PVC compound with higher toughness and higher heat resistance was prepared by using a new type of PVC modifier, ultrafine full-vulcanized powdered rubber (UFPR). The UFPRs used in this paper were butadiene nitrile UFPR-1 (NBR-UFPR-1) with particle size of about 150 nm and butadiene nitrile UFPR-2 (NBR-UFPR-2) with particle size of about 90 nm. Dynamic mechanical thermal analysis (DMTA) showed that glass transition temperature (Tg) of PVC in compounds increased from 77.52 °C of neat PVC to 82.37 and 85.67 °C, while the notched impact strengths increased from 3.1 kJ/m2 of neat PVC to 5.2, 5.5 kJ/m2, respectively. It can be found that both Tg and toughness of PVC have been improved simultaneously, and the smaller the particle size of NBR-UFPRs, the higher the Tg and the impact strength. The property could be attributed to larger interface and more interfacial interaction between NBR-UFPRs and PVC matrix. Transmission electron microscopy (TEM) showed that NBR-UFPRs could be well dispersed in PVC matrix.  相似文献   

15.
Thermal and dynamic mechanical behaviors of wood plastic composites made of poly vinyl chloride (PVC) and surface treated, untreated wood flour were characterized by using differential scanning calorimetry and dynamic mechanical analysis. Glass transition temperature (Tg) of PVC was slightly increased by the addition of wood flour and by wood flour surface treatments. Heat capacity differences (ΔCp) of composites before and after glass transition were markedly reduced. PVC/wood composites exhibited smaller tan δ peaks than PVC alone, suggesting that less energy was dissipated for coordinated movements and disentanglements of PVC polymer chains in the composites. The rubbery plateaus of storage modulus (E′) curves almost disappeared for PVC/wood composites in contrast to a well defined plateau range for pure PVC. It is proposed that wood flour particles act as “physical crosslinking points” or “pinning centers” inside the PVC matrix, resulting in the absence of the rubbery plateau and high E′ above Tg. The mobility of PVC chain segments were further retarded by the presence of surface modified wood flour. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

16.
The real‐time measurement of the morphology of immiscible polymer blends based on polypropylene (PP) and polyamide 6 (PA6) was performed during melt blending in a twin‐screw extruder. The disperse phase particle size and concentration were obtained in‐line with an optical device placed at the die exit. To validate the response of the optical device, its detector was calibrated in advance in a bench using ceramic particles of well‐controlled size dispersed in water. The optical device was able to measure the changes in particle size and concentration and the data enabled the calculation of the particle extinction cross section. Melt blending experiments in the extruder were performed in a transient mode, where a small amount of the material was added as a pulse to the main melt flow. The pulses containing pellets of the PA6 and polypropylene grafted with acrylic acid (PP‐g‐AA) were added to the PP flow stream in different amounts. The detector's response increased with increasing concentrations in the PA6 and PP‐g‐AA. The disperse phase particle size decreased concomitantly because of the compatibilizing effect of the PP‐g‐AA on the PP/PA6 immiscible blend. That observation confirmed that the detector's response was directly related to the disperse phase particle size. POLYM. ENG. SCI., 2008. © 2008 Society of Plastics Engineers  相似文献   

17.
Two grafted ethylene–octene copolymers [POEs; i.e., POE‐g‐maleic anhydried (MAH) and aminated POE (denoted by POE‐g‐NH2) were used as compatibilizers in immiscible blends of thermoplastic polyurethane (TPU) and POE. The effects of the compatibilizers on the dynamic rheological properties and morphologies of the TPU/POE blends were investigated. The characteristic rheological behaviors of the blends indicated that the strong interactions between the two phases were due to the compatibilization. Microstructural observation confirmed that the compatibilizers were located at the interface in the blends and formed a stable interfacial layer and smaller dispersed phase particle size. Compared with POE‐g‐MAH, POE‐g‐NH2 exhibited a better compatibilization effect in the TPU/POE blends. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

18.
The morphology and mechanical properties of PVC/SMA‐g‐PA6 blends were investigated in this paper. Graft to polymer SMA‐g‐PA6 was prepared via a solution graft reaction between SMA and PA6. FTIR test evidences the occurrence of the graft reaction between SMA and PA6. DSC analysis shows that SMA‐g‐PA6 has a lower melting point of 187°C, which may result in a decrease in crystallinity of PA6 and thus enable efficient blending of SMA‐g‐PA6 and PVC. Compatibilization was evidenced by the dramatic increase in mechanical properties, the smaller particle size and finer dispersion of PA6 in PVC matrix, and, further, a cocontinuous morphology at 16 wt % SMA‐g‐PA6 content. SMA‐g‐PA6 from the solution graft reaction can toughen and reinforce PVC material. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 94: 432–439, 2004  相似文献   

19.
PVC/PS blends are obtained through a reactive extrusion–polymerization method by the absorption of a solution of styrene monomer, initiator, and a crosslinking agent in commercial suspension‐type porous polyvinyl chloride (PVC) particles, forming a dry‐blend with a relatively high monomer content. These PVC/styrene dry‐blends are reactively polymerized in a twin‐screw extruder in the melt state. They do not contain monomer residues as detected by GC. The transparency, fracture surface morphology, thermal stability, rheology and static and dynamic mechanical properties of these blends are compared to physical PVC/PS blends at similar compositions. Owing to the high polymerization temperature (180°C), short PS chains are formed in the reactive extrusion process. These short chains are dispersed both as a separate phase of ~2 μm particles (recognized by SEM) and also as molecularly dispersed chains enhancing plasticization and compatibilization. The molecularly dispersed short PS chains tend to plasticize the PVC phase, reducing its melt viscosity and glass transition temperature. The content of the short PS chains forming the dispersed separate PS particles is too low for DMTA to detect a separate Tg. Thus, reactively extruded PVC/PS blends exhibit single Tg transitions at lower temperatures compared with the neat PVC. Migration of the PVC's low‐molecular‐weight additives (lubricants and thermal stabilizer) to the PS phase is observed in the physical PVC/PS blends, causing antiplasticization of the PS phase. This results in both reduction of the Tg and an increase in the thermal stability of the PS phase in the physical PVC/PS blends. Comparing TGA thermograms of reactively extruded and physical PVC/PS indicates that the PS formed in the extruder is different from the commercial PS. This can stem from various chemical reactions that can take place in the studied reactive polymerization process. Polym. Eng. Sci. 44:1473–1483, 2004. © 2004 Society of Plastics Engineers.  相似文献   

20.
The phenomenon of plasticizer acceptance by poly(vinyl chloride) (PVC) in hotprocess dry blending is examined via scanning electron microscopy, mercury intrusion porosimetry, and torque rheometer measurements. The effects of granule porosity, resin molecular weight, and synthesis recipe in PVC manufacture by the suspension process are related to the rate of plasticizer acceptance. For a PVC resin to dry blend, i.e., to become a free-flowing powder when mixed with plasticizer under hot-processing conditions, the resin granules must be porous. Porosity arises from interstices between primary PVC particles. At a given granule porosity, an increase in primary particle agglomeration adversely affects dry blend performance. At constant molecular weight and for resins manufactured by a given recipe, dry-blend performance is quantitatively described by granule porosity. With an increase in resin molecular weight, a greater granule porosity is required to maintain an equivalent dry-blend time (DBT). Accordingly, for most suspending agent recipes, DBT is dependent directly upon granule porosity and inversely upon molecular weight. However, if the suspending agent used in resin manufacture is an excessively rapid film former, dry-blend performance with molecular weight variation is dependent upon the suspending agent's concentration, not upon granule porosity, which must be adequate, nor upon the resin's molecular weight. An interfacial film-forming suspending agent enhances fusion of primary PVC particles at the suspension granule—water interface, increasing the granule's “pericellular membrane” thickness. This membrane, a PVC skin, does not significantly influence dry-blend performance with low- or intermediate-viscosity plasticizers. The particle skin does impede dry-blend rates with high-viscosity, poorly solvating plasticizers, but this effect can be negated in part by increasing the diameter of pore openings in the topographical skin. Dry blending occurs below the glass transition temperature (Tg) of PVC with low-viscosity plasticizers and above the Tg with high-viscosity, poorly solvating modifiers. The influence of resin and plasticizer variables indicates the dry-blend phenomenon to be a diffusion-controlled process. The rate of dry blending is dependent upon two mechanisms: (1) the rate of pore penetration—which exposes the plasticizer to a much greater surface area than if it remained exterior, encapsulating the granule—and (2) the rate of plasticizer diffusion into the PVC matrix.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号