首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper presents the experimental results of 32 axially loaded concrete-filled steel tubular columns (CFT). The load was introduced only on the concrete core by means of two high strength steel cylinders placed at the column ends to evaluate the passive confinement provided by the steel tube. The columns were filled with structural concretes with compressive strengths of 30, 60, 80 and 100 MPa. The outer diameter (D) of the column was 114.3 mm, and the length/diameter (L/D) ratios considered were 3, 5, 7 and 10. The wall thicknesses of the tubes (t) were 3.35 mm and 6.0 mm, resulting in diameter/thickness (D/t) ratios of 34 and 19, respectively. The force vs. axial strain curves obtained from the tests showed, in general, a good post-peak behavior of the CFT columns, even for those columns filled with high strength concrete. Three analytical models of confinement for short concrete-filled columns found in the literature were used to predict the axial capacity of the columns tested. To apply these models to slender columns, a correction factor was introduced to penalize the calculated results, giving good agreement with the experimental values. Additional results of 63 CFT columns tested by other researchers were also compared to the predictions of the modified analytical models and presented satisfactory results.  相似文献   

2.
This paper presents the effect of changes in diameter of the steel tube (D), wall thickness of the steel tube (t), strength of in-fill concrete (fcu), and length of the tube (L) on ultimate axial load (Pue) and axial shortening at the ultimate point (δue) of circular Concrete Filled steel Tubes (CFT). Taguchi’s approach with an L9 orthogonal array is used to reduce the number of experiments. With the help of initial experiments, linear regression models are developed to predict the axial load and the axial shortening at the ultimate point. A total of 243 circular CFT samples are tested to verify the accuracy of these models at three factors with three levels. The experimental results are analyzed using Analysis Of Variance to investigate the most influencing factor on strength and axial shortening of CFT samples. Comparisons are made with predicted column strengths using the existing design codes, AISC-LRFD-2005 and EC4-1994.  相似文献   

3.
The paper describes 37 tests conducted on slender circular tubular columns filled with normal and high strength concrete subjected to eccentric axial load. The test parameters were the nominal strength of concrete (30, 70 and 90 MPa), the diameter to thickness ratio D/t, the eccentricity ratio e/D and the column slenderness (L/D). The experimental ultimate load of each test was compared with the design loads from Eurocode 4, which limits the strength of concrete up to 50 MPa. The aim of the paper is to establish the advisability of the use of high strength concretes as opposed to that of normal strength concretes by comparing three performance indices: concrete contribution ratio, strength index and ductility index. The results show for the limited cases analyzed that the use of high strength concrete for slender composite columns is interesting since this achieves ductile behavior despite the increase in load-carrying capacity is not greatly enhanced.  相似文献   

4.
This paper describes sixteen fire tests conducted on slender circular hollow section columns filled with normal and high strength concrete, subjected to concentric axial loads. The test parameters were the nominal strength of concrete (30 and 80 MPa), the infilling type (plain concrete, reinforced concrete and steel fiber reinforced concrete) and the axial load level (20% and 40%). The columns were tested under fixed-pinned boundary conditions and the relative slenderness at room temperature was higher than 0.5 in all of the cases. A numerical model was validated against the tests, in order to extend the results and understand the failure mode of such columns. It is the aim of this paper to study the influence in a fire situation of the use of high strength concrete, as opposed to normal strength concrete. The results have shown that for slender columns subjected to high temperatures, the behavior of high strength concrete was different than for stub columns, spalling not being observed in the experiments. Furthermore, the addition of steel fibers was not found very advantageous in slender columns, since no increment in terms of fire resistance was obtained for the columns which used this type of reinforcement. However, the addition of reinforcing bars seems to be the solution in some cases, where the use of external fire protection wants to be avoided in the design of HSS structures, since the reinforcing bars allow the tube to resist a higher axial load.  相似文献   

5.
This paper presents an experimental analysis of the confinement effects in steel–concrete composite columns regarding two parameters: concrete compressive strength and column slenderness. Sixteen concrete-filled steel tubular columns with circular cross section were tested under axial loading. The tested columns were filled by concrete with compressive strengths of 30, 60, 80, and 100 MPa, and had length/diameter ratios of 3, 5, 7, and 10. The experimental values of the columns’ ultimate load were compared to the predictions of 4 code provisions: the Brazilian Code NBR 8800:2008, Eurocode 4 (EN 1994-1-1:2004), AINSI/AISC 360:2005, and CAN/CSA S16-01:2001. According to the results, the load capacity of the composite columns increased with increasing concrete strength and decreased with increasing length/diameter ratio. In general, the code provisions were highly accurate in the prediction of column capacity. Among them, the Brazilian Code was the most conservative, while Eurocode 4 presented the values closest to the experimental results.  相似文献   

6.
Concrete filled double skin tubular columns (CFDST) have excellent structural behaviour. They have been used as transmission towers and have potential to be used as building columns and bridge piers. Performance of the CFDST columns under ambient temperature has been well studied, whereas fire resistance of such columns is still a major concern. A summary of a series of fire tests on CFDST columns conducted by the authors is briefly presented in the paper. A finite element numerical model is developed to analyse the fire behaviour of CFDST columns, namely thermal and structural responses under fire exposure. The model is verified by the test results and then used to perform parametric analyses. Parameters which have significant effect on the fire behaviour of CFDST columns are identified. Based on the parametric studies, suggestions on the fire resistance design of such columns are made. Practical design tables are derived for the fire resistance design of some typical CFDST columns.  相似文献   

7.
李升才  章炯 《建筑结构》2012,(4):94-98,103
通过6个配有焊接环式复合箍筋高强混凝土柱的水平低周反复加载试验及有限元数值模拟,研究了箍筋对柱受力性能和变形性能的影响。试验及数值模拟中考虑了轴压比、配箍率这两个参数的影响,由试验及数值模拟得到了力与位移的滞回曲线和骨架曲线,分析了箍筋对试件延性、滞回特性、耗能性能以及正截面抗弯承载力的影响。研究结果表明,在焊接环式箍筋的约束下,试件正截面的实际抗弯承载力明显要高于《混凝土结构设计规范》计算值,说明箍筋发挥了很好的约束作用;与一般的钢筋混凝土柱相比,所有试件的滞回曲线都更加饱满,没有明显的捏拢现象,证明这种箍筋的约束作用大大提高了柱的抗震能力和耗能能力;随着箍筋的约束指标增大,试件的延性可以得到提高,并且还能减小轴压比的增大对柱延性产生的不良影响。  相似文献   

8.
Most of the design codes (ACI-318-2008 and Euro Code-2-2004) propose the moment magnifier method in order to take into account the second order effect to design slender reinforced concrete columns. The accuracy of this method depends on the effective flexural stiffness of the column. This paper proposes a new equation to obtain the effective stiffness EI of slender reinforced concrete columns. The expression is valid for any shape of cross-section, subjected to combined axial loads and biaxial bending, both for short-time and sustained loads, normal and high strength concretes, but it is only suitable for columns with equal effective buckling lengths in the two principal bending planes. The new equation extends the proposed EI equation in the “Biaxial bending moment magnifier method” by Bonet et al. (2004) [6], which is valid only for rectangular sections. The method was compared with 613 experimental tests from the literature and a good degree of accuracy was obtained. It was also compared with the design codes ACI-318 (08) and EC-2 (2004) improving the precision. The method is capable to verify and design with sufficient accuracy slender reinforced concrete columns in practical engineering design applications.  相似文献   

9.
This paper proposes an efficient numerical model for the simulation of the behavior of slender circular concrete-filled tubular columns subjected to eccentric axial load with single curvature, for the cases of both normal and high strength concrete. The paper focuses on the study of the influence that the variables affecting beam-column behavior (length and relative slenderness) and the variables affecting section behavior (diameter/thickness ratio, mechanical capacity of steel) have on the overall buckling of this type of column. An extended parametric study is carried out to propose design recommendations, primarily to establish the importance of the use of high strength concrete compared with that of normal strength concrete. The results show that for slender elements the optimum design is reached when the mechanical capacity of the steel is slightly lower than that of the concrete contribution.  相似文献   

10.
The process of propagation, kinking of microcracks in concrete and the interaction among cracks as well as the induced failure were analyzed using the model that describes the wing type crack from the point of view of micromechanics. The pseudo-force method is applied to calculate the compressive strength factor of kinky propagated crack taking into account the effect of interaction among cracks. On the assumption that the micro fracture toughness of concrete does not vary with stain rate, the static and dynamic strength of concrete under different confinements can be calculated. The comparison of calculation result with experimental data indicates that a good agreement is achieved which implies that the model can be used to explain the rate-dependent properties of concrete in multi-axial stress state. __________ Translated from Shuili Xuebao, 2007, 38(5): 538–545 [译自: 水利学报]  相似文献   

11.
A finite element method (FEM) program is developed and used in this paper to analyse the behaviour of concrete-filled steel tubular (CFST) columns during the entire stage of fire exposure, including: loading at ambient temperature, heating, cooling to the ambient temperature and post-fire loading to failure. The emphasis of this paper is on CFST column behaviours during the cooling and post-fire stages because these behaviours are affected by the loading and heating histories, but they have not previously been studied. This paper will present the mechanical property models for these different loading and heating stages. To validate the FEM program, some experimental data, including fire resistance, axial deformation and ultimate strength of CFST columns are compared and it is found that the FEM program can predict the test results with good accuracy. Using the FEM program, a parametric study is then conducted to investigate the influences of ambient temperature loading and heating history on the cooling and post-fire behaviours of CFST columns. It is concluded that various parameters (such as load ratio and elevating temperature time ratio etc.) affect the residual strength of CFST columns severely. Finally, this paper proposes a set of formulas which can be used to predict the residual strength of CFST columns after going through the whole fire exposure process.  相似文献   

12.
Spatial hysteretic model and elasto-plastic stiffness of steel columns   总被引:3,自引:0,他引:3  
By defining yielding function, F, and introducing a so called deformation parameter, R, a simple hysteretic model is proposed between F and R to link 3-dimensional forces acting on a section of a steel column and yielding degree of the section. Based on the hysteretic model proposed and plastic flow laws, the spatial elasto-plastic stiffness equation of steel columns is established. The effectiveness and reliability of the hysteretic model and stiffness equation are verified by experiments through applying the theory to predicting the behavior of 6 specimens of box and H-shaped steel columns subjected to constant vertical loads and repeated and reversed bi-directional horizontal loads. The achievements made in this paper provide the key to problems in the analysis of spatial elasto-plastic responses of steel buildings subjected to earthquakes.  相似文献   

13.
The ultimate load carrying capacity of continuous composite plate girder bridges is usually limited by the local buckling failure of steel girders at interior supports. This paper presents a simple reinforcement method which changes the failure mechanism of the continuous girder from local buckling to formation of plastic hinges at the interior supports and mid-span. Such a change in failure mechanism greatly improves the strength and ductility of the superstructure. In this method the compressive portion of the web near the interior support is braced against local buckling by bolting pairs of stiff bracing elements on opposite sides of the web. The bracing elements prevent local buckling failure of the support section and create a section which can rotate inelastically at plastic moment allowing the second hinge to form at mid-span. The bracing elements may be plates or longitudinal stiffeners which should be designed to remain elastic while the section undergoes plastic deformation. The behavior of plate girders which are reinforced by such bracing elements is studied using nonlinear finite element analyses.  相似文献   

14.
Zhong Tao  Lin-Hai Han  Dong-Ye Wang 《Thin》2008,46(10):1113-1128
It is generally expected that inner-welded longitudinal stiffeners can be used to improve the structural performance of thin-walled hollow steel structural stub columns filled with concrete. Thirty-six specimens, including 30 stiffened stub columns and six unstiffened ones, were tested to investigate the improvement of ductile behaviour of such stiffened composite stub columns with various methods. The involved methods include increasing stiffener height, increasing stiffener number on each tube face, using saw-shaped stiffeners, welding binding or anchor bars on stiffeners, and adding steel fibres to concrete. It has been found that adding steel fibres to concrete is the most effective method in enhancing the ductility capacity, while the construction cost and difficulty will not be increased significantly.  相似文献   

15.
The use of fiber reinforced polymer (FRP) reinforcement is becoming increasingly attractive in construction of new structures. However, the inherent linear elastic behavior of FRP materials up to rupture is considered as a major drawback under seismic attacks when significant material inelasticity is required to dissipate the input energy through hysteretic cycles. Besides, cost considerations, including FRP material and construction of pre-fabricated FRP configurations, especially for stirrups, and probable damage to epoxy coated fibers when transported to the field are noticeable issues. The current research has proposed a novel economical hybrid reinforcement scheme for the next generation of infrastructures implementing on-site fabricated FRP stirrups comprised of FRP sheets. The hybrid reinforcement consists of conventional longitudinal steel reinforcement and FRP stirrups. The key feature of the proposed hybrid reinforcement is the enhanced strength and ductility owing to the considerable confining pressure provided by the FRP stirrups to the longitudinal steel reinforcement and core concrete. Reinforced concrete beam specimens and beamcolumn joint specimens were tested implementing the proposed hybrid reinforcement. The proposed hybrid reinforcement, when compared with conventional steel stirrups, is found to have higher strength, stiffness, and energy dissipation. Design methods, structural behavior, and applicability of the proposed hybrid reinforcement are discussed in detail in this paper.  相似文献   

16.
This paper investigates the buckling behaviour of cold-formed high strength stainless steel stiffened and unstiffened slender square and rectangular hollow section columns. The high strength duplex material is austenitic-ferritic stainless steel approximately equivalent to EN 1.4462 and UNS S31803. The columns were compressed between fixed ends at different column lengths. A nonlinear finite element model has been developed to investigate the behaviour of stiffened slender square and rectangular hollow section columns. The column strengths, load-shortening curves as well as failure modes were predicted for the stiffened and unstiffened slender hollow section columns. An extensive parametric study was conducted to study the effects of cross-section geometries on the strength and behaviour of the stiffened and unstiffened columns. The investigation has shown that the high strength stainless steel stiffened slender hollow section columns offer a considerable increase in the column strength over that of the unstiffened slender hollow section columns. The column strengths predicted from the parametric study were compared with the design strengths calculated using the American Specification, Australian/New Zealand Standard and European Code for cold-formed stainless steel structures. It is shown that the design strengths obtained using the three specifications are generally conservative for the cold-formed stainless steel unstiffened slender square and rectangular hollow section columns, but slightly unconservative for the stiffened slender square and rectangular hollow section columns.  相似文献   

17.
由于在减小梁腹厚度和维修可行性方面的优势,在当代的建筑趋势中带体外预应力的预浇拼接式桥梁已很普遍了。连续梁可以减少伸缩缝数量,改善行车路况,但这种梁的内在结构特性很难分析(尤其在极限状态下)。本丈通过实验来检验比较带体外应力和带复合应力的两种跨连续梁在非对称载荷下的伸缩特性  相似文献   

18.
Concrete‐filled‐steel‐tube (CFST) columns have been widely adopted for column construction of tall buildings due to its superior strength and ductility performance contributed by the composite action. However, this beneficial composite action cannot be fully developed at early elastic stage as steel dilates more than concrete and thereby causing imperfect interface bonding. Hence, it reduces the elastic strength and stiffness of the CFST columns. To resolve the problem, external confinement in the form of steel rings is proposed in this study to restrict the lateral dilation of concrete and steel at initial elastic stage. In this paper, CFST columns of various dimensions cast with normal‐strength or high‐strength concrete and installed with external steel rings were tested under uni‐axial compression. From the results, it was evident that (a) the external steel rings could restrict the lateral dilation of CFST columns and improve the interface bonding condition and (b) externally confined CFST columns had uni‐axial strength and stiffness larger than those of unconfined CFST columns. With the experimental results, an analytical model taking into account the confining effects of steel tube and rings has been developed to predict the uni‐axial strength of ring‐confined CFST columns. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

19.
复合钢管高强混凝土短柱轴心受压性能试验与分析   总被引:3,自引:0,他引:3  
为研究外方内圆复合钢管高强混凝土短柱轴心受压性能,完成了三组共23个试件的轴压试验和典型试件的非线性有限元分析。试验结果表明:各试件的破坏形态基本相同,为方钢管向外鼓曲,方钢管与圆钢管之间的混凝土酥松、局部压碎;试验结束时,试件纵向应变达到0.09~0.11,尚能承担约70%的峰值竖向力;按文献[8]有关公式计算得到的试件压缩刚度平均值为实测值的83.6%;采用圆钢管对其管内混凝土提供约束,方钢管对混凝土不提供约束、但提供轴压承载力的计算假定,试件轴心受压承载力计算值与试验值吻合良好;非线性有限元计算得到的竖向力 纵向应变曲线及破坏过程与试验结果符合较好。  相似文献   

20.
为研究T形截面柱箍筋约束混凝土在重复荷载作用下的加卸载模型,在已有5根箍筋约束混凝土T形截面柱轴心重复受压性能试验研究基础上,采用ANSYS有限元软件对其受力过程进行分析,研究了T形截面柱箍筋对核心混凝土的有效约束作用。综合有限元分析结果及试验结果,建立了T形截面柱约束混凝土的抗压强度和峰值应变计算式,计算值与试验值吻合良好。通过分析重复荷载作用下箍筋约束混凝土的应力-应变包络线、共同点轨迹线的特征,发现共同点轨迹线与包络线形状相似,给出了应力-应变包络线方程,计算结果与试验结果吻合良好。据此建立了重复荷载作用下T形截面柱箍筋约束混凝土的卸载曲线、再加载曲线方程,计算曲线与试验曲线吻合较好,说明建议的加卸载准则能较好地反映轴压重复荷载作用下箍筋约束混凝土的应力-应变曲线的变化规律。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号