首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 222 毫秒
1.
Poly ε‐caprolactone‐polystyrene block‐copolymers (PCL‐b‐PSt) were synthesized using a modified titanium catalyst as the dual initiator. Alcoholysis of Ti(OPr)4 by 4‐hydroxy 2,2,6,6 tetramethyl piperidinyl‐1‐oxyl (HO‐TEMPO) gave a bifunctional initiator Ti(OTEMPO)4. Poly ε‐caprolactone prepolymer end‐capped with the nitroxide group was first prepared by ring opening polymerization of ε‐caprolactone with this initiator at high conversion. The nitroxide‐end‐capped structure and molar mass (Mn) of the polymers were demonstrated by typical UV absorption band. This analytical technique indicates a near‐quantitative nitroxide functionality and a Mn in good agreement with size exclusion chromatography (SEC) ones. This polyester prepolymer was used to further initiate the radical polymerization with styrene and reach the block copolymers (PCL‐b‐PSt). All the prepolymers and block copolymers were characterized by SEC and NMR spectroscopy. Additionally, the preparation of star polymers bearing two kinds of arms (PCL and PSt) was envisaged and a preliminary result was given. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

2.
Bionanoparticles of starch obtained by submitting native potato starch granules to acid hydrolysis conditions. The resulted starch nanoparticles were used as core or macro initiator for polymerization of ε‐caprolactone (CL). Starch nanoparticle‐g‐polycaprolactone was synthesized through ring‐opening polymerization (ROP) of CL in the presence of Sn(Oct)2 as initiator. The detailed microstructure of the resulted copolymer was characterized with NMR spectroscopy. Thermal characteristic of the copolymer was investigated using DSC and TGA. By introducing PCL, the range of melting temperature for starch was increased and degradation of copolymer occurred in a broader region. X‐ray diffraction and TEM micrographs confirmed that there was no alteration of starch crystalline structure and morphology of nanoparticles, respectively. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

3.
Triphenylamine‐based oligomers and polymers with linear, hyperbranched, star‐shaped or dendrimer architectures have been synthesized and studied due to their interesting electro‐optical properties. In many cases insoluble materials are obtained. In this study, we report the synthesis of grafted polytriphenylamine by chemical and electrochemical polymerization of triphenylamine‐end‐functionalized poly(ε‐caprolactone). Functionalized ε‐caprolactone oligomers were obtained by ring‐opening polymerization of ε‐caprolactone initiated by 4‐hydroxymethyltriphenylamine/stannous octanoate (tin 2‐ethylhexanoate). The ring‐opening polymerization of ε‐caprolactone using 4‐hydroxymethyltriphenylamine/stannous octanoate as initiating system provided ε‐caprolactone oligomers, with well‐defined molecular weights, containing a triphenylamine terminal group. Chemical and electrochemical coupling oxidation of the triphenylamine ends allowed the formulation of polyarylamines with ε‐caprolactone oligomers as grafts. Graft copolymers with an aryleneamine backbone and short poly(ε‐caprolactone) grafts were obtained by (electro)chemical oxidation of oligomers containing triphenylamine terminal groups. Copyright © 2009 Society of Chemical Industry  相似文献   

4.
The continuous polymerization of ε‐caprolactone initiated by titanium phenoxide was carried out in both an internal mixer and a twin‐screw extruder. The polymerization was performed under different processing conditions, including various temperatures and screw speeds. To perform a kinetic study, samples were collected along the time axis (internal mixer) and along the screw axis (extruder). Size exclusion chromatography and proton nuclear magnetic resonance were used to study the evolution of the conversion degree with mixing time and with the extruder. The rheological behavior was also characterized. Temperature had a strong effect on conversion in the internal mixer, whereas in the twin‐screw extruder, both temperature and screw speed played major roles. The specificity of the titanium phenoxide to lead to high‐molar‐mass poly(ε‐caprolactone) under these processing conditions was also confirmed. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

5.
The main aims of the work reported here were to synthesize and characterize a new 2,2′‐ethylidene‐bis(4,6‐di‐tert‐butylphenol) (EDBPH2)‐based bimetal yttrium complex, Y(EDBP)2(DME)Na(DME)3 (1c; where DME is ethylene glycol dimethyl ether), which was employed as an efficient initiator for the ring‐opening polymerization of ε‐caprolactone (ε‐CL). From single‐crystal X‐ray diffraction, the solid structure of this new bimetal initiator was well established. Experimental results show that 1c initiates the ring‐opening polymerization of ε‐CL to afford poly(ε‐CL) with a narrow molecular weight distribution (Mw/Mn = 1.09–1.36, 65 °C). Based on an in situ NMR study, a plausible coordination–insertion mechanism is then proposed. The bimetal complex 1c can be used as an initiator for the ring‐opening polymerization of ε‐CL with some living characteristics. A study of the mechanism reveals that DME displacement in 1c by ε‐CL is involved in the initiation process and the propagation may proceed through three pathways by Na? O insertion or Y? O insertion. Copyright © 2009 Society of Chemical Industry  相似文献   

6.
Poly(ε‐caprolactone)/clay nanocomposites were synthesized by in situ ring‐opening polymerization of ε‐caprolactone in the presence of montmorillonite modified by hydroxyl functionalized, quaternized polyhedral oligomeric silsesquioxane (POSS) surfactants. The octa(3‐chloropropyl) polyhedral oligomeric silsesquioxane was prepared by hydrolytic condensation of 3‐chloropropyltrimethoxysilane, which was subsequently quaternized with 2‐dimethylaminoethanol. Montmorillonite was modified with the quaternized surfactants by cation exchange reaction. Bulk polymerization of ε‐caprolactone was conducted at 110°C using stannous octoate as an initiator/catalyst. Nanocomposites were analyzed by X‐ray diffraction, transmission electron microscopy, thermo gravimetric analysis, and differential scanning calorimetry. Hydroxyl functionalized POSS was employed as a surface modifier for clay which gives stable clay separation for its 3‐D structure and also facilitates the miscibility of polymer with clay in the nanocomposites due to the star architecture. An improvement in the thermal stability of PCL was observed even at 1 wt % of clay loading. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

7.
This article presents the ring‐opening polymerization of ε‐caprolactone (ε‐CL) from PP film modified with an initiator layer composed of ? OSn(Oct) groups. This method consists of two steps: (1) Sn(Oct)2 exchanged with the hydroxyl groups on the surface of PP film, forming the ? OSn(Oct) groups bonded on the surface; (2) surface‐initiated ring‐opening polymerization of ε‐CL with the ? OSn(Oct) groups. The initiator layer is characterized by attenuated total reflectance‐Fourier transform infrared (ATR‐FTIR), contact angles, and X‐ray photoelectron spectroscopy (XPS). The growth of PCL chains from the initiator layer through ring‐opening polymerization is successfully achieved. ATR‐FTIR, XPS, and scanning electron microscope (SEM) are also used to characterize the grafted film. XPS results reveal that the PCL chains cover the surface of PP film after 4 h. The SEM images reveal that the PCL chain clusters grow into regular spheroidal particles, which can be changed into other different morphology by treated with different solvents. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

8.
Copolymerization of mixtures of L ‐lactide and ε‐caprolactone has been initiated by diphenylzinc. The reaction conditions were investigated, to discover the effects on yield, molecular weight and microstructure of copolymers obtained. The temperature used varied between 50 and 120 °C, the molar ratio of monomer to initiator ranged between 90 and 1440 mol/mol, and the molar ratio of ε‐caprolactone to L ‐lactide employed was between 100/0 and 0/100 mol/mol. Copolymers were characterized by 1H‐NMR, 13C‐NMR, DSC and gel permeation chromatography. The results indicate that incorporation of L ‐lactide to the growing chain is preferred and ε‐caprolactone is copolymerized after most of the L ‐lactide has been depleted. The microstructure of obtained copolyesters was affected considerably by transesterification reactions. It was observed that increasing reaction temperature, reaction time and concentration initiator was advantageous to the transesterification. The crystallinity of copolyester obtained was determined by differential scanning calorimetry. The results are in good agreement with both molar composition and sequence distribution of copolyesters. Copyright © 2006 Society of Chemical Industry  相似文献   

9.
The ring‐opening polymerization of ε‐caprolactone initiated with a divalent samarium bis(phosphido) complex [Sm(PPh2)2] is reported. The polymerization proceeded under mild reaction conditions and resulted in polyesters with number‐average molecular weights of 8.2 × 103 to 12.5 × 103. The yield and molecular weight of poly(ε‐caprolactone)s were dependent on the experimental parameters, such as the monomer/initiator molar ratio, the monomer concentration, the reaction temperature, and the polymerization time. The obtained polymers were characterized with Fourier transform infrared, NMR, gel permeation chromatography, and differential scanning calorimetry. On the basis of an end‐group analysis of low‐molecular‐weight polymers by NMR spectroscopy, a coordination–insertion mechanism is proposed for the polymerization. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 1558–1564, 2005  相似文献   

10.
In this study, a novel well‐defined epoxy mid‐chain functional macromonomer of poly(ε‐caprolactone) (PCL) has been synthesized by ring‐opening polymerization (ROP) of ε‐caprolactone (ε‐CL) and epoxidation on workup with 3‐chloroperoxybenzoic acid. The ROP of ε‐CL monomer in bulk at 110°C, by means of a dihydroxy functional initiator namely, 3‐cyclohexene‐1,1‐dimethanol in conjunction with stannous‐2‐ethylhexanoate, (Sn(Oct)2), yielded a well‐defined PCL with a cyclohexene mid‐chain group. The epoxidation of the cyclohexene (CH) mid‐chain group of PCL was performed using 3‐chloroperoxybenzoic acid. GPC, IR, and 1H‐NMR analyses revealed that a low‐polydispersity macromonomer of PCL with the desired cyclohexene oxide (CHO) functionality at the mid‐chain was obtained. The photoinduced cationic polymerizations of this macromonomer yielded comb‐shaped and graft copolymers. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

11.
In this study, biodegradable blends of poly(ε‐caprolactone) (PCL) and poly(N‐vinylpyrrolidone) (PVP) were prepared by a new strategy in the following steps: (1) free radical polymerization of N‐vinyl‐2‐pyrrolidone (NVP) in ε‐caprolactone (CL); (2) ring‐opening polymerization of ε‐caprolactone in the presence of PVP to obtain the target blends. The structure of the blends was confirmed by FTIR and 1H NMR, and the molecular weight of PCL and PVP were determined by GPC. SEM study revealed that this polymerization method could decrease the disperse phase size and improve the interphase when compared with solution‐blending method. The phase inversion occurred when PVP content was 15–20 wt %. Subsequently, the PCL sphere dispersed in PVP matrix and its size decreased with the increase of PVP content. The contact angle results showed that PVP has a profound effect on hydrophilic properties of PCL/PVP blends. PCL/PVP blends are believed to be promising for drug delivery, cell therapy, and other biomedical applications. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

12.
Biodegradable poly(ε‐caprolactone) (PCL) was formed on benzylic hydroxyl‐functionalized Wang resin surface by surface‐initiated ring‐opening polymerization (SI‐ROP). The SI‐ROP of ε‐caprolactone was achieved first by treating Wang resin with Tin(II) 2‐ethylhexanoate [Sn(Oct)2] to form Tin(II) complex, and then followed by polymerization of ε‐caprolactone in anhydrous toluene at 60°C. Thus, the polymer‐grafted Wang resin was characterized by Fourier transform infrared (FTIR) spectroscopy, differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), optical microscopy (OM), and field‐emission scanning electron microscopy (FE‐SEM). The FTIR spectroscopic analysis of polymer‐grafted Wang resin (Wang‐g‐PCL) reveals the formation of ester linkage between PCL and hydroxyl‐terminated Wang resin. The DSC thermogram shows melting peak corresponding to PCL polymer on Wang resin surface. Thermogravimetric investigation shows increase in PCL content on the Wang resin surface in terms of percentage of weight loss with increase in reaction time. The formation of polymeric layers on the Wang resin surface can be directly visualized from OM and SEM images. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

13.
A series of yttrium trisalicylaldimine complexes formed in situ by the reaction of trialkyl complex [Y(CH2SiMe3)3(THF)2] (THF is tetrahydrofuran) with three equivalent salicylaldimines were used as initiators for the ring‐opening polymerization of ε‐caprolactone. Electronic and steric effects of the salicylaldimine ligand played important roles on the catalytic properties of the yttrium complexes. The yttrium trisalicylaldimine complex Y( L7 )3 ( L7 = (S)‐2,4‐di‐tert‐butyl‐6‐[(1‐phenylethylimino)methyl]phenol) most effectively initiated controlled ring‐opening polymerization of ε‐caprolactone to prepare poly(ε‐caprolactone)s with high molecular weights and moderate molecular weight distributions. Obtained by density functional theory calculations, the optimized geometries of the four different active centers with four salicylaldimine ligands explained the experimental results. Copyright © 2011 Society of Chemical Industry  相似文献   

14.
2,5‐Dibromo‐1,4‐(dihydroxymethyl)benzene was used as initiator in ring‐opening polymerization of ε‐caprolactone in the presence of stannous octoate (Sn(Oct)2) catalyst. The resulting poly(ε‐caprolactone) (PCL) macromonomer, with a central 2,5‐dibromo‐1,4‐diphenylene group, was used in combination with 1,4‐dibromo‐2,5‐dimethylbenzene for a Suzuki coupling in the presence of Pd(PPh3)4 as catalyst or using the system NiCl2/bpy/PPh3/Zn for a Yamamoto‐type polymerization. The poly(p‐phenylenes) (PPP) obtained, with PCL side chains, have solubility properties similar to those of the starting macromonomer, ie soluble in common organic solvents at room temperature. The new polymers were characterized by 1H and 13C NMR and UV spectroscopy and also by GPC measurements. The thermal behaviour of the precursor PCL macromonomer and the final poly(p‐phenylene)‐graft‐poly(ε‐caprolactone) copolymers were investigated by thermogravimetric analysis and differential scanning calorimetry analyses and compared. Copyright © 2004 Society of Chemical Industry  相似文献   

15.
Lanthanide metal (II) 2,6‐di‐tert‐butylphenoxide complexes (ArO)2Ln(THF)3 (Ln = Sm 1 , Yb 2 ) alone have been developed to catalyze the ring‐opening polymerization of trimethylenecarbonate (TMC) and random copolymerization of TMC and ε‐caprolactone (ε‐CL) for the first time. The influence of reaction conditions, such as initiator, initiator concentration, polymerization temperature, and polymerization time, on monomer conversion, molecular weight, and molecular weight distribution of the resulting PTMC was investigated. It was found that the divalent complex 1 showed higher activity for the polymerization of TMC than complex 2 . The random structure and thermal behavior of the copolymers P(TMC‐co‐CL) have been characterized by 1H NMR, 13C NMR, GPC, and DSC analysis. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

16.
A new high‐molecular‐weight three‐arm poly(ε‐caprolactone) (PCL) polymer was synthesized in bulk (in the absence of any solvent) by using aluminum tri‐sec butoxide as a tri‐functional initiator. The ring‐opening polymerization of ε‐caprolactone occurs via a coordination‐insertion mechanism that links three growing polyester chains to the Al central atom via metal alkoxide bonds. The global kinetics of the bulk polymerization was determined, and a kinetic model based on monomer‐polymer equilibrium was developed to predict the fractional extent of monomer conversion. Monomer conversions in excess of 95% to form high‐molecular‐weight PCL were achieved. Polym. Eng. Sci. 44:1491–1497, 2004. © 2004 Society of Plastics Engineers.  相似文献   

17.
Poly(vinyl alcohol)‐initiated microwave‐assisted ring opening polymerization of ε‐caprolactone in bulk was investigated, and a series of poly(vinyl alcohol)‐graft‐poly(ε‐caprolactone) (PVA‐g‐PCL) copolymers were prepared, with the degree of polymerization (DP) of PCL side chains and the degree of substitution (DS) of PVA by PCL being in the range of 3–24 and 0.35–0.89, respectively. The resultant comb‐like PVA‐g‐PCL copolymers were confirmed by means of FTIR, 1H NMR, and viscometry measurement. The introduction of hydrophilic backbone resulted in the decrease in both melting point and crystallization property of the PVA‐g‐PCL copolymers comparing with linear PCL. With higher microwave power, the DP of PCL side chains and DS of PVA backbone were higher, and the polymerization reaction proceeded more rapidly. Both the DP and monomer conversion increased with irradiation time, while the DS increased first and then remained constant. With initiator in low concentration, the DP and DS were higher, while the monomer was converted more slowly. Microwaves dramatically improved the polymerization reaction in comparison of conventional heating method. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104, 3973–3979, 2007  相似文献   

18.
Combination of the organic–inorganic hybrid such as silsesquioxane with ε‐caprolactone will lead to materials expected to be environmentally friendly and applicable to biomedical usages. A ladder‐like poly(phenyl silsesquioxane) based hybrid star‐shaped copolymer of ε‐caprolactone was prepared by ring opening polymerization of ε‐caprolactone catalyzed by Sn(Oct)2 with hydroxyl terminated ladder‐like poly(phenyl silsesquioxane) as initiator. The copolymers were characterized by proton nuclear magnetic resonance (1H‐NMR), silicon nuclear magnetic resonance (29Si‐NMR), Fourier‐transform infrared spectrometer (FT‐IR), size exclusion chromatography (SEC), thermo gravimetric analysis (TGA), and differential scanning calorimetry (DSC) in detail. Furthermore, the enzymatic degradation property of the copolymers was also investigated. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42335.  相似文献   

19.
Polyurethanes with multiblock copolymers of poly(?‐caprolactone) (PCL) and poly(tetramethylene oxide) glycol (PTMG) or poly(ethylene glycol) (PEG) as a soft segment were synthesized in situ via reactive extrusion from ?‐caprolactone (CL) and 4,4′‐diphenylmethane diisocyanate (MDI). The titanium alkoxide mixture generated from an ester‐exchange reaction between titanium propoxide [Ti(OPr)4], and excessive PTMG or PEG was used as an initiator and catalyst. Compared to the reported fabrication of polycaprolactone‐based polyurethane (PCLU), the in situ reactive extrusion preparation not only explored a new rapid route for the fabrication of PCLU but also offered a simplified, controllable approach for the production of PCLU in a successive mass scale. A series of PTMG–PCLUs and PEG–PCLUs with different PCL block‐average degrees of polymerization (DPn's) were prepared by only an adjustment of the relative concentration of CL in the reaction system, with a certain constant molar ratio of MDI to titanium alkoxide. 1H‐NMR, gel permeation chromatography, and differential scanning calorimetry results indicate that all of the CL monomers were converted in the polymerization, and the molecular weight of the copolymers was about 8 × 104 g/mol with a polydispersity index of approximate 2.4. With an increase in the PCL block‐average DPn in PTMG–PCLU from 25 to 40, the tensile strength increased from 16.5 to 22.7 MPa, and the melting point increased from 46.1 to 49.5°C. It was also verified by PEG–PCLU prepared with organic Ti of lowered content in the initiator mixture that the mechanical properties could be greatly affected and dropped with decreasing content of organic Ti in the initiator mixture. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

20.
A series of novel lipid functionalized poly(ε‐caprolactone)s (PCLs) were synthesized through ROP of ε‐caprolactone in the presence of threo‐9,10‐dihydroxyoctadecanoic acid, synthesized from oleic acid. PCLs with different molecular weights were obtained by controlling the molar ratio of the initiator to the monomer. DSC and XRD analysis indicate that the crystallinity of PCLs decreased when compared to unfunctionalized PCL. The enzymatic degradation study shows that for samples with lower lipid derivatives content, a higher enzymatic degradation rate was observed because the lipase enzymes attack the ester bonds of the polymer; increased lipid content therefore inhibits the action of the lipase enzymes. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号