首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This paper discusses a generalized quadratic stabilization problem for a class of discrete‐time singular systems with time‐delay and nonlinear perturbation (DSSDP), which the satisfies Lipschitz condition. By means of the S‐procedure approach, necessary and sufficient conditions are presented via a matrix inequality such that the control system is generalized quadratically stabilizable. An explicit expression of the static state feedback controllers is obtained via some free choices of parameters. It is shown in this paper that generalized quadratic stability also implies exponential stability for linear discrete‐time singular systems or more generally, DSSDP. In addition, this new approach for discrete singular systems (DSS) is developed in order to cast the problem as a convex optimization involving linear matrix inequalities (LMIs), such that the controller can stabilize the overall system. This approach provides generalized quadratic stabilization for uncertain DSS and also extends the existing robust stabilization results for non‐singular discrete systems with perturbation. The approach is illustrated here by means of numerical examples.  相似文献   

2.
Considers the problems of robust stability and stabilization for uncertain continuous singular systems with state delay. The parametric uncertainty is assumed to be norm bounded. The purpose of the robust stability problem is to give conditions such that the uncertain singular system is regular, impulse free, and stable for all admissible uncertainties, while the purpose of the robust stabilization is to design a state feedback control law such that the resulting closed-loop system is robustly stable. These problems are solved via the notions of generalized quadratic stability and generalized quadratic stabilization, respectively. Necessary and sufficient conditions for generalized quadratic stability and generalized quadratic stabilization are derived. A strict linear matrix inequality (LMI) design approach is developed. An explicit expression for the desired robust state feedback control law is also given. Finally, a numerical example is provided to demonstrate the application of the proposed method  相似文献   

3.
This paper deals with the problem of robust stability and robust stabilization for uncertain continuous singular systems with multiple time‐varying delays. The parametric uncertainty is assumed to be norm bounded. The purpose of the robust stability problem is to give conditions such that the uncertain singular system is regular, impulse free, and stable for all admissible uncertainties. The purpose of the robust stabilization problem is to design a feedback control law such that the resulting closed‐loop system is robustly stable. This problem is solved via generalized quadratic stability approach. A strict linear matrix inequality (LMI) design approach is developed. Finally, a numerical example is provided to demonstrate the application of the proposed method.  相似文献   

4.
In this paper, we develop a unified framework to address the problem of optimal nonlinear analysis and feedback control for partial stability and partial‐state stabilization. Partial asymptotic stability of the closed‐loop nonlinear system is guaranteed by means of a Lyapunov function that is positive definite and decrescent with respect to part of the system state, which can clearly be seen to be the solution to the steady‐state form of the Hamilton–Jacobi–Bellman equation and hence guaranteeing both partial stability and optimality. The overall framework provides the foundation for extending optimal linear‐quadratic controller synthesis to nonlinear nonquadratic optimal partial‐state stabilization. Connections to optimal linear and nonlinear regulation for linear and nonlinear time‐varying systems with quadratic and nonlinear nonquadratic cost functionals are also provided. Finally, we also develop optimal feedback controllers for affine nonlinear systems using an inverse optimality framework tailored to the partial‐state stabilization problem and use this result to address polynomial and multilinear forms in the performance criterion. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
The problem of delay‐dependent robust stabilization for uncertain singular discrete‐time systems with Markovian jumping parameters and time‐varying delay is investigated. In terms of free‐weighting‐matrix approach and linear matrix inequalities, a delay‐dependent condition is presented to ensure a singular discrete‐time system to be regular, causal and stochastically stable based on which the stability analysis and robust stabilization problem are studied. An explicit expression for the desired state‐feedback controller is also given. Some numerical examples are provided to demonstrate the effectiveness of the proposed approach. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
This paper addresses the problems of local stabilization and control of open‐loop unstable discrete‐time quadratic systems subject to persistent magnitude bounded disturbances and actuator saturation. Firstly, for some polytopic region of the state‐space containing the origin, a method is derived to design a static nonlinear state feedback control law that achieves local input‐to‐state stabilization with a guaranteed stability region under nonzero initial conditions and persistent bounded disturbances. Secondly, the stabilization method is extended to deliver an optimized upper bound on the ?‐induced norm of the closed‐loop system for a given set of persistent bounded disturbances. Thirdly, the stabilization and ? designs are adapted to cope with actuator saturation by means of a generalized sector bound constraint. The proposed controller designs are tailored via a finite set of state‐dependent linear matrix inequalities. Numerical examples are presented to illustrate the potentials of the proposed control design methods. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

7.
This paper considers the problems of robust stability analysis and robust stabilization for uncertain singular systems with norm-bounded time-varying uncertainties. The robust stability problem is solved via the notion of generalized quadratic stability which guarantees that the uncertain singular system is stable, regular and impulse free simultaneously for all admissible uncertainties, while the robust stabilization problem is solved via the notion of generalized quadratic stabilizability. An algebraic approach is adopted in the paper. Our main results are extensions of some existing results on uncertain regular systems for singular systems.  相似文献   

8.
This note deals with the problems of robust stability and stabilization for uncertain discrete-time singular systems. The parameter uncertainties are assumed to be time-invariant and norm-bounded appearing in both the state and input matrices. A new necessary and sufficient condition for a discrete-time singular system to be regular, causal and stable is proposed in terms of a strict linear matrix inequality (LMI). Based on this, the concepts of generalized quadratic stability and generalized quadratic stabilization for uncertain discrete-time singular systems are introduced. Necessary and sufficient conditions for generalized quadratic stability and generalized quadratic stabilization are obtained in terms of a strict LMI and a set of matrix inequalities, respectively. With these conditions, the problems of robust stability and robust stabilization are solved. An explicit expression of a desired state feedback controller is also given, which involves no matrix decomposition. Finally, an illustrative example is provided to demonstrate the applicability of the proposed approach.  相似文献   

9.
In this article, the state and mode feedback control strategy is investigated for the discrete‐time Markovian jump linear system (MJLS) with time‐varying controllable mode transition probability matrix (MTPM). This strategy, consisting of a state feedback controller and a mode feedback controller, is proposed to ensure MJLS's stability and meanwhile improve system performance. First, a mode‐dependent state feedback controller is designed to stabilize the MJLS based on the time‐invariant part of the MTPM such that it can still keep valid even if the MTPM is adjusted by the mode feedback control. Second, a generalized quadratic stabilization cost is put forward for evaluating MJLS's performance, which contains system state, state feedback controller, and mode feedback controller. To reduce the stabilization cost, a mode feedback controller is introduced to adjust each mode's occurrence probability by changing the time‐varying controllable part of MTPM. The calculation of such mode feedback controller is given based on a value‐iteration algorithm with its convergence proof. Compared with traditional state feedback control strategy, this state and mode feedback control strategy offers a new perspective for the control problem of general nonhomogeneous MJLSs. Numerical examples are provided to illustrate the validity of the proposed strategy.  相似文献   

10.
The problem of delay‐dependent robust stabilization for uncertain singular time‐delay systems is investigated in this paper. The parameter uncertainty is assumed to be norm‐bounded and possibly time‐varying, while the time delay considered here is assumed to be constant but unknown. A delay‐dependent condition is presented for a singular time‐delay system to be regular, impulse free, and stable, based on which robust stability analysis and the robust stabilization problem are studied. An explicit expression for the desired state‐feedback control law is also given. The obtained results are formulated in terms of linear matrix inequalities (LMIs), which involve no decomposition of the system matrices. Some numerical examples are given to show the efficiency of the theoretical conditions.  相似文献   

11.
This paper is concerned with the problems of robust stochastic stabilization and robust H control for uncertain discrete‐time stochastic bilinear systems with Markovian switching. The parameter uncertainties are time‐varying norm‐bounded. For the robust stochastic stabilization problem, the purpose is the design of a state feedback controller which ensures the robust stochastic stability of the closed‐loop system irrespective of all admissible parameter uncertainties; while for the robust H control problem, in addition to the robust stochastic stability requirement, a prescribed level of disturbance attenuation is required to be achieved. Sufficient conditions for the solvability of these problems are obtained in terms of linear matrix inequalities (LMIs). When these LMIs are feasible, explicit expressions of the desired state feedback controllers are also given. An illustrative example is provided to show the effectiveness of the proposed approach. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

12.
This paper considers the problem of quadratic mean‐square stabilization of a class of stochastic linear systems using quantized state feedback. Different from the previous works where the system is restricted to be deterministic, we focus on stochastic systems with multiplicative noises in both the system matrix and the control input. A static quantizer is used in the feedback channel. It is shown that the coarsest quantization density that permits stabilization of a stochastic system with multiplicative noises in the sense of quadratic mean‐square stability is achieved with the use of a logarithmic quantizer, and the coarsest quantization density is determined by an algebraic Riccati equation, which is also the solution to a special stochastic linear control problem. Our work is then extended to exponential quadratic mean‐square stabilization of the same class of stochastic systems. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

13.
This paper considers the problem of robust stability and robust stabilization for linear systems with a constant time-delay in the state and subject to real convex polytopic uncertainty. First of all, for robust stability problem, we exploit new matrix inequalities characterization of delay-dependent quadratic stability results, demonstrate that it allows the use of parameter-dependent Lyapunov functionals, and develop control design methods based on linear matrix inequalities (LMIs) for solving the robust control problem. Next, the problem of determining the maximum time-delay under which the system remains stable is cast into a generalized eigenvalue problem and thus solved by LMI techniques. Finally, illustrative examples are given to demonstrate the advantage of these new representations.  相似文献   

14.
The robust stochastic stability, stabilization and H control for mode‐dependent time‐delay discrete Markovian jump singular systems with parameter uncertainties are discussed. Based on the restricted system equivalent (r.s.e.) transformation and by introducing new state vectors, the singular system is transformed into a standard linear system, and delay‐dependent linear matrix inequalities (LMIs) conditions for the mode‐dependent time‐delay discrete Markovian jump singular systems to be regular, causal and stochastically stable, and stochastically stable with γ‐disturbance attenuation are obtained, respectively. With these conditions, robust stabilization problem and robust H control problem are solved, and the LMIs sufficient conditions are obtained. A numerical example illustrates the effectiveness of the method given in the paper. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

15.
This paper aims at developing a robust observer–based estimated state feedback control design method for an uncertain dynamical system that can be represented as a linear time‐invariant system connected with an integral quadratic constraint–type nonlinear uncertainty. Traditionally, in existing design methodologies, a convex semidefinite constraint is obtained at the cost of conservatism and unrealistic assumptions. This paper avoids such assumptions and formulates, the design of the robust observer state feedback controller as the feasibility problem of a bilinear matrix inequality (BMI) constraint. Unfortunately, the search for a feasible solution of a BMI constraint is an NP‐hard problem in general. The applicability of a linearization method, such as the variable change method and the congruence transformation, depends on the specific structure of the problem at hand and cannot be generalized. This paper transforms the feasibility analysis of the BMI constraint into an eigenvalue problem and applies the convex‐concave–based sequential linear matrix inequality optimization method to search for a feasible solution. Furthermore, an augmentation of the sequential linear matrix inequality algorithm to improve its numerical stability is presented. In the application part, a vehicle lateral control problem is presented to demonstrate the applicability of the proposed algorithm to a real‐world estimated state feedback control design problem and the necessity of the augmentation for numerical stability.  相似文献   

16.
In this paper, an improved linear matrix inequality (LMI)‐based robust delay‐dependent stability test is introduced to ensure a larger upper bound for time‐varying delays affecting the state vector of an uncertain continuous‐time system with norm‐bounded‐type uncertainties. A quasi‐full‐size Lyapunov–Krasovskii functional is chosen and free‐weighting matrix approach is employed. Less restrictive sufficient conditions are derived for robust stability of time‐varying delay systems with norm‐bounded‐type uncertainties. Moreover, the investigation of the stabilization problem with memoryless state‐feedback control is presented such that the stabilizability criteria are obtained in terms of matrix inequalities, which can be solved via utilizing a cone complementarity minimization algorithm. Finally, the problem of output feedback stabilization for square systems is also taken into consideration. The output feedback stabilizability criteria are derived in the form of linear matrix inequalities, which are convex and can be easily solved using interior point algorithms. A plenty of numerical examples are presented indicating that the proposed stability and stabilization methods effectively improve the existing results. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

17.
广义不确定系统鲁棒稳定性及鲁棒镇定的矩阵不等式方法   总被引:6,自引:1,他引:5  
考虑广义不确定系统的鲁棒稳定性及鲁棒镇定问题.提出了广义不确定系统'广义二 次稳定'及'广义二次可镇定'的概念,利用矩阵不等式,分别得到了所考虑广义不确定系统广义 二次稳定及广义二次可镇定的充要条件,而且,使广义不确定系统鲁棒镇定的状态反馈控制律 的设计可通过求解一给定的矩阵不等式而得到.  相似文献   

18.
This article provides new linear matrix inequality (LMI) sufficient conditions for a generalized robust state feedback control synthesis problem for linear continuous‐time polytopic systems. This generalized problem includes the robust stability, H2 ‐norm, and H ‐norm problems as special cases. Using a novel general separation result, which separates the state feedback gain from the Lyapunov matrix but with the state feedback gain synthesized from the slack variable, then allows the formulation of LMI sufficient conditions for the generalized problem. Compared to existing parameterized LMI based conditions, where auxiliary scalar parameters are introduced in order to include the quadratic stability conditions (ie, assuming a constant Lyapunov matrix) as a special case, the proposed new conditions are true LMIs and contain as a particular case the optimal quadratic stability solution. Utilizing any initial solution derived by the quadratic or some existing methods as a starting solution, we propose an algorithm based on an iterative procedure, which is recursively feasible in each update, to compute a sequence of nonincreasing upper bounds for the H2 ‐norm and H ‐norm. In addition, if no feasible initial solution can be found for some uncertain systems using any existing methods, another algorithm is presented that offers the possibility of obtaining a robust stabilizing gain. Numerical examples from the literature demonstrate that our algorithms can provide less conservative results than existing methods, and they can also find feasible solutions where all other methods fail.  相似文献   

19.
This paper considers quadratic stabilizability and H feedback control for stochastic discrete‐time uncertain systems with state‐ and control‐dependent noise. Specifically, the uncertain parameters considered are norm‐bounded and external disturbance is an l2‐square summable stochastic process. Firstly, both quadratic stability and quadratic stabilization criteria are presented in the form of linear matrix inequalities (LMIs). Then we design the robust H state and output feedback H controllers such that the system with admissible uncertainties is not only quadratically internally stable but also robust H controllable. Sufficient conditions for the existence of the desired robust H controllers are obtained via LMIs. Finally, some examples are supplied to illustrate the effectiveness of our results.  相似文献   

20.
This paper introduces a multiple‐input–single‐output (MISO) neuro‐fractional‐order Hammerstein (NFH) model with a Lyapunov‐based identification method, which is robust in the presence of outliers. The proposed model is composed of a multiple‐input–multiple‐output radial basis function neural network in series with a MISO linear fractional‐order system. The state‐space matrices of the NFH are identified in the time domain via the Lyapunov stability theory using input‐output data acquired from the system. In this regard, the need for the system state variables is eliminated by introducing the auxiliary input‐output filtered signals into the identification laws. Moreover, since practical measurement data may contain outliers, which degrade performance of the identification methods (eg, least‐square–based methods), a Gaussian Lyapunov function is proposed, which is rather insensitive to outliers compared with commonly used quadratic Lyapunov function. In addition, stability and convergence analysis of the presented method is provided. Comparative example verifies superior performance of the proposed method as compared with the algorithm based on the quadratic Lyapunov function and a recently developed input‐output regression‐based robust identification algorithm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号