首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Here, a novel and simple route to fabricate highly dense arrays of palladium nanodots and nanowires with sub‐30 nm periodicity using nanoporous templates fabricated from supramolecular assemblies of a block copolymer, polystyrene‐block‐poly(4‐vinylpyridine) (PS‐b‐P4VP) and a low molecular weight additive, 2‐(4′‐hydroxybenzeneazo) benzoic acid (HABA) is demonstrated. The palladium nanoparticles, which are directly deposited in the nanoporous templates from an aqueous solution, selectively migrate in the pores mainly due to their preferential attraction to the P4VP block covering the pore wall. The polymer template is then removed by oxygen plasma etching or pyrolysis in air resulting in palladium nanostructures whose large scale morphology mirrors that of the original template. The method adopted in this work is general and versatile so that it could easily be extended for patterning a variety of metallic materials into dot and wire arrays.  相似文献   

2.
The ability to vary, adjust, and control hydrophobic interactions is crucial in manipulating interactions between biological objects and the surface of synthetic materials in aqueous environment. To this end a grafted polymer layer (multi‐component mixed polymer brush) is synthesized that is capable of reversibly exposing nanometer‐sized hydrophobic fragments at its hydrophilic surface and of tuning, turning on, and turning off the hydrophobic interactions. The reversible switching occurs in response to changes in the environment and alters the strength and range of attractive interactions between the layer and hydrophobic or amphiphilic probes in water. The grafted layer retains its overall hydrophilicity, while local hydrophobic forces enable the grafted layer to sense and attract the hydrophobic domains of protein molecules dissolved in the aqueous environment. The hydrophobic interactions between the material and a hydrophobic probe are investigated using atomic force microscopy measurements and a long‐range attractive and contact‐adhesive interaction between the material and the probe is observed, which is controlled by environmental conditions. Switching of the layer exterior is also confirmed via protein adsorption measurements.  相似文献   

3.
The biological performance of orthopedic and oral implants can be significantly improved by functionalizing the non‐physiological metallic implant surface through the application of biologically active coatings. In this paper, a cost‐effective alternative to traditional biomedical coatings for bone substitution through exploitation of the specific advantages of the electrospray deposition technique for the immobilization of the enzyme alkaline phosphatase (ALP) onto the implant surface is presented. Since ALP increases the local inorganic phosphate concentration required for physiological mineralization of hard tissues, ALP coatings will enable enzyme‐mediated mineralization onto titanium surfaces. To evaluate the bone‐bioactive capacity of the ALP‐coated titanium surface, soaking experiments are performed. Although the purely inorganic so‐called simulated body fluid is the standard in vitro procedure for predictive studies on potential bone bonding in vivo, an alternative testing solution is proposed that also contains organic phosphates (cell culture medium supplemented with the organic β‐b;‐glycerophosphate (β‐b;‐GP) and serum proteins), thereby resembling the in vivo conditions more closely. Under these physiological conditions, the electrosprayed ALP coatings accelerated mineralization onto the titanium surface as compared to noncoated implant material by means of enzymatic pathways. Therefore, this novel approach toward implant fixation holds significant promise.  相似文献   

4.
Porous polymer films that can be employed for broadband and omnidirectional antireflection coatings are successfully shown. These films form a gradient‐refractive‐index structure and are achieved by spin‐coating the solution of a polystyrene‐block‐poly(methyl methacrylate) (PS‐b‐PMMA)/PMMA blend onto an octadecyltrichlorosilane (OTS)‐modified glass substrate. Thus, a gradient distribution of PMMA domains in the vertical direction of the entire microphase‐separated film is obtained. After those PMMA domains are removed, a PS porous structure with an excellent gradient porosity ratio in the vertical direction of the film is formed. Glass substrates coated with such porous polymer film exhibit both broadband and omnidirectional antireflection properties because the refractive index increases gradually from the top to the bottom of the film. An excellent transmittance of >97% for both visible and near‐infrared (NIR) light is achieved in these gradient‐refractive‐index structures. When the incident angle is increased, the total transmittance for three different incident angles is improved dramatically. Meanwhile, the film possesses a color reproduction character in the visible light range.  相似文献   

5.
Ink‐jet printed metal nanoparticle films have been shown to anneal at high temperatures (above 500 °C) to highly conductive metal films on glass or ceramic substrates, but they suffer from cracking and inadequate substrate adhesion. Here, we report printable conductive materials, with added nanosized glass frit that can be annealed at 500 °C to form a crack‐free dense microstructure that adheres well to glass substrates. This overcomes the previous challenges while still retaining the desired high film conductivity. Controlling the particle characteristics and dispersion behavior plays an important role in successfully incorporating the glass frit into the conductive inks.  相似文献   

6.
The rapidly increasing research interest in nanodevices, including nanoelectronics, nano‐optoelectronics, and sensing, requires the development of surface‐patterning techniques to obtain large‐scale arrays of nanounits (mostly nanocrystals and/or nanoparticles) on a silicon substrate. Herein, we demonstrate a “clinging‐microdroplet” method to fabricate patterning crystal arrays based on the employment of high‐adhesion, superhydrophobic, pillar‐structured silicon substrates. Different from the previous hydrophilic/hydrophobic patterned self‐assembly monolayer technique, this method provides a novel strategy to fabricate patterning crystal arrays upon pillar‐structured silicon substrates of homogenous superhydrophobicity and high adhesion, which greatly simplifies the modification process of the supporting substrates. Ordered crystal arrays with a tunable size and distribution density were successfully generated, and individual crystals grew on the top of each micropillar. Besides soluble inorganic materials, protein microspheres and suspending Ag‐nanoparticle or polystyrene‐microsphere aggregations could also be patterned in regular arrays, showing the wide adaptation of such an adhesive patterning technique. This novel and low‐cost technique for patterning crystal arrays upon silicon substrates could yield breakthroughs in areas ranging from nanodevices to nanoelectronics.  相似文献   

7.
Micromagnetic structure evolution in Ni‐Mn‐Ga ferromagnetic shape memory thin films is investigated by means of temperature dependent magnetic force microscopy (TD‐MFM). The center of interest is the magnetic properties of epitaxial Ni‐Mn‐Ga thin films on MgO substrates across thermally induced phase transitions. Experimental results are discussed within the framework of competing magnetic interactions arising in stressed thin ferromagnetic films. Measurements on 14M martensite specimens are supplemented by three‐dimensional micromagnetic simulations. Corresponding calculated MFM micrographs are compared to experimental data. The influence of twin variant dimension and orientation on micromagnetic domain formation and wall structure is depicted from a theoretical point of view. A micromagnetic model system of partial flux closure is proposed and calculated analytically to estimate a stress induced magneto crystalline anisotropy constant in austenite Ni‐Mn‐Ga.  相似文献   

8.
本文介绍了金刚石薄膜和类金刚石薄膜的制备与薄膜性能分析方法,也介绍了它们的应用前景。本文给出了华北光电所研究类金刚石薄膜的结果。  相似文献   

9.
10.
In Nature, directional surfaces on insect cuticle, animal fur, bird feathers, and plant leaves are composed of dual micro‐nanoscale features that tune roughness and surface energy. Here, experimental and theoretical approaches for the design, synthesis, and characterization of new bioinspired surfaces demonstrating unidirectional surface properties are summarized. The experimental approaches focus on bottom‐up and top‐down synthesis methods of unidirectional micro‐ and nanoscale films to explore and characterize their anomalous features. The theoretical component focuses on computational tools to predict the physicochemical properties of unidirectional surfaces.  相似文献   

11.
Tunable and enhanced low‐field magnetoresistance (LFMR) is observed in epitaxial (La0.7Sr0.3MnO3)0.5:(ZnO)0.5 (LSMO:ZnO) self‐assembled vertically aligned nanocomposite (VAN) thin films, which have been grown on SrTiO3 (001) substrates by pulsed laser deposition (PLD). The enhanced LFMR properties of the VAN films reach values as high as 17.5% at 40 K and 30% at 154 K. They can be attributed to the spin‐polarized tunneling across the artificial vertical grain boundaries (GBs) introduced by the secondary ZnO nanocolumns and the enhancement of spin fluctuation depression at the spin‐disordered phase boundary regions. More interestingly, the vertical residual strain and the LFMR peak position of the VAN films can be systematically tuned by changing the deposition frequency. The tunability of the physical properties is associated with the vertical phase boundaries that change as a function of the deposition frequency. The results suggest that the tunable artificial vertical GB and spin‐disordered phase boundary in the unique VAN system with vertical ferromagnetic‐insulating‐ferromagnetic (FM‐I‐FM) structure provides a viable route to manipulate the low‐field magnetotransport properties in VAN films with favorable epitaxial quality.  相似文献   

12.
RuO2‐based mesoporous thin films of optical quality are synthesized from ruthenium‐peroxo‐based sols using micelle templates made of amphiphilic polystyrene‐polyethylene oxide block copolymers. The mesoporous structure and physical properties of the RuO2 films (mesoporous volume: 30%; pore diameter: ~30 nm) can be controlled by the careful tuning of both the precursor solution and thermal treatment (150–350 °C). The optimal temperature that allows control of both mesoporosity and nanocristallinity is strongly dependent on the substrate (silicon or fluorine‐doped tin oxide). The structure of the resulting mesoporous films are investigated using X‐ray diffraction, X‐ray photoelectron spectroscopy, and atomic force microscopy. Mesoporous layers are additionally characterized by transmission and scanning electron microscopy and ellipsometry while their electrochemical properties are analyzed via cyclic voltammetry. Thick mesoporous films of ruthenium oxide hydrates, RuO2 · xH2O, obtained using a thermal treatment at 280 °C, exhibit capacitances as high as 1000 ± 100 F g?1 at a scan rate of 10 mV s?1, indicating their potential application as electrode materials.  相似文献   

13.
Directional transport properties at the nanoscale remain a challenge, primarily due to issues pertaining to control over the underlying anisotropy and scalability to macroscopic scales. Here, we develop a facile approach based on template‐guided fluidic assembly of high mobility building blocks – single walled carbon nanotubes (SWNTs) – to fabricate ultrathin and anisotropic SWNTs films. A major advancement is the complete control over the anisotropy in the assembled nanostructure, realized by three‐dimensional engineering of the dip‐coated SWNTs ultrathin film into alternating hydrophilic and hydrophobic microline patterns with prescribed intra/inter‐line widths and line thicknesses. Variations in the contact line profile results in an evaporation‐controlled assembly mechanism that leads to alternating, and more importantly, contiguous SWNTs networks. Evidently, the nanoscopic thickness modulations are direct reflections of the substrate geometry and chemistry. The nanostructured film exhibits significant anisotropy in electrical and thermal transport properties as well as an optically transparent nature, as revealed by characterization studies. The direct interplay between the anisotropy and the 3D microline patterns of the substrate combined with the wafer‐level scalability of the fluidic assembly allows us to tune the transport properties for a host of nanoelectronic applications.  相似文献   

14.
A new mechanism is proposed for the generation of self‐assembled nanodots at the surface of a film based on spontaneous outcropping of the secondary phase of a nanocomposite epitaxial film. Epitaxial self‐assembled Sr–La oxide insulating nanodots are formed through this mechanism at the surface of an epitaxial metallic ferromagnetic La0.7Sr0.3MnO3 (LSMO) film grown on SrTiO3 from chemical solutions. TEM analysis reveals that, underneath the La–Sr oxide (LSO) nanodots, the film switches from the compressive out‐of‐plane stress component to a tensile one. It is shown that the size and concentration of the nanodots can be tuned by means of growth kinetics and through modification of the La excess in the precursor chemical solution. The driving force for the nanodot formation can be attributed to a cooperative effect involving the minimization of the elastic strain energy and a thermodynamic instability of the LSMO phase against the formation of a Ruddelsden–Popper phase Sr3Mn4O7 embedded in the film, and LSO surface nanodots. The mechanism can be described as a generalization of the classical Stranski–Krastanov growth mode involving phase separation. LSO islands induce an isotropic strain to the LSMO film underneath the island which decreases the magnetoelastic contribution to the magnetic anisotropy.  相似文献   

15.
16.
17.
Self‐assembled nanocomposite films and coatings have huge potential for many functional and structural applications. However, control and manipulation of the nanostructures is still at very early stage. Here, guidelines are established for manipulating the types of composite structures that can be achieved. In order to do this, a well studied (YBa2Cu3O7‐δ)1‐x:(BaZrO3)x ‘model’ system is used. A switch from BaZrO3 nanorods in YBa2Cu3O7‐δ matrix to planar, horizontal layered plates is found with increasing x, with a transitional cross‐ply structure forming between these states at x = 0.4. The switch is related to a release in strain energy which builds up in the YBa2Cu3O7‐δ with increasing x. At x = 0.5, an unusually low strain state is observed in the planar composite structure, which is postulated to arise from a pseudo‐spinodal mechanism.  相似文献   

18.
Here, the formation of discrete supramolecular mono‐ and bi‐component architectures from novel and multivalent molecular modules bearing complementary recognition moieties that are prone to undergo multiple H‐bonds, such as 2,6‐di(acetylamino)pyridine and uracil residues, is described. These nanostructured H‐bonded arrays, including dimeric and pentameric species, are thoroughly characterized in solution by NMR, in the solid state by FT‐IR, and at the solid–liquid interface by means of scanning tunneling microscopy. The employed strategy is extremely versatile as it relies on the tuning of the valency, size, and geometry of the molecular modules; thus, it may be of interest for the bottom‐up fabrication of nanostructured functional materials with sub‐nanometer precision.  相似文献   

19.
王建成  韩丽瑛 《激光与红外》1993,23(6):40-41,32
本文对反应离子镀和反应蒸发(电子束蒸发)工艺制备的光学薄膜的牢固度和表面粗糙度进行了检测,并将结果进行对比。  相似文献   

20.
Achieving self‐assembling/self‐organizing systems is the holy grail of nanotechnology. Spontaneous organization is not unique to the physical sciences since nature has been producing such systems for millions of years. In biological systems global patterns emerge from numerous interactions among lower‐level components of the system. The same is true for physical systems. In this review, the self‐assembly mechanisms of oxide nanocomposite films, as well as the advantageous functionalities that arise from such ordered structures, are explored.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号