首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
Surface‐bound microarrays of multiple oligo‐ and macromolecules (e.g., peptides, DNA) offer versatile options in biomedical applications like drug screening, DNA analysis, or medical diagnostics. Combinatorial syntheses of these molecules in situ can save significant resources in regard to processing time and material use. Furthermore, high feature densities are needed to enable high‐throughput and low sample volumes as generally regarded in combinatorial chemistry. Here, a scanning‐probe‐lithography‐based approach for the combinatorial in situ synthesis of macromolecules is presented in microarray format. Feature sizes below 40 µm allow for the creation of high‐density arrays with feature densities of 62 500 features per cm2. To demonstrate feasibility of this approach for biomedical applications, a multiplexed array of functional protein tags (HA‐ and FLAG‐tag) is synthesized, and selective binding of respective epitope recognizing antibodies is shown. This approach uses only small amounts of base chemicals for synthesis and can be further parallelized, therefore, opening up a route to flexible, highly dense, and cost‐effective microarrays.  相似文献   

12.
13.
14.
15.
16.
17.
18.
19.
20.
Tin‐based perovskite, which exhibits narrower bandgap and comparable photophysical properties to its lead analogs, is one of the most forward‐looking lead‐free semiconductor materials. However, the poor oxidative stability of tin perovskite hinders the development toward practical application. In this work, the effect of pseudohalide anions on the stability and emission properties of single‐layer 2D tin perovskite nanoplates with chemical formula TEA2SnI4 (TEA = 2‐thiophene‐ethylammonium) is reported. The results reveal that ammonium thiocyanate (NH4SCN) is the most effective additive in enhancing the stability and photoluminescence quantum yield of 2D TEA2SnI4 (23 ± 3%). X‐Ray photoelectron spectroscopic investigations on the thiocyanate passivated TEA2SnI4 nanoplate show less than a 1% increase of Sn4+ signal upon 30 min exposure to air under ambient conditions (298 K, humidity ≈70%). Furthermore, no noticeable decrease in emission intensity of the nanoplate is observed after 20 h in air. The SCN passivation during the growth stage of TEA2SnI4 is proposed to play a crucial role in preventing the oxidation of Sn2+ and hence boosts both stability and photoluminescence yield of tin perovskite nanoplates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号