首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A vinyl‐modified anthraquinone (AQ) derivative (Vinyl‐AQ) is synthesized through a palladium‐mediated Suzuki coupling reaction between vinylphenylboronic acid and 2‐chloromethylanthraquinone and, subsequently, copolymerized with N,N‐dimethylacrylamide (DMAM) through free radical copolymerization in organic solvent. The chemical structure of the resulting water‐soluble copolymer, P(DMAM‐co‐AQ), is verified using techniques such as proton nuclear magnetic resonance, attenuated total reflection‐infrared spectroscopy, thermogravimetric analysis, and UV–vis spectroscopy. The evolution of the oxygen scavenging abilities of aqueous P(DMAM‐co‐AQ) solutions after UV irradiation is monitored as a function of UV irradiation time, concentration of AQ moieties, and pH. The copolymer is proved an effective UV‐triggered oxygen scavenger, leading to dissolved oxygen contents below 1 ppm for the optimized experimental conditions. This behavior is related with the appearance of novel chemical species with interesting optical properties, as suggested by the respective evolution of the UV–vis absorption and photoluminescence spectra after UV irradiation.  相似文献   

2.
Poly(N‐isopropylacrylamide) (NIPAAm) is well known as a smart material with good thermal sensitivity and favorable biocompatibility. A series of new smart hydrogels, NIPAAm copolymerized with IAM (itaconamic acid; 4‐amino‐2‐methylene‐4‐oxobutanoic acid), were synthesized through radical solution polymerization in this work. Poly(NIPAAm‐co‐IAM) can respond to the changes of temperature as well as pH value. Such a characteristic is due to the fact that IAM contains not only a hydrophilic acrylic acid moiety but also an acrylamide moiety to be thermal and pH sensitive. The experimental results show that the lower critical solution temperature (LCST) of the copolymer increases as the molar fraction of IAM increases. Moreover, based on the current experimental data, 3 wt % of Poly(NIPAAm‐co‐IAM) aqueous solution in this study exhibits a phase transition temperature (37.8°C) close to the human body temperature in the buffer solution of pH 7 possibly to be useful in drug delivery. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42367.  相似文献   

3.
Copolymer of thiophen‐3‐yl acetic acid 4‐pyrrol‐1‐yl phenyl ester (TAPE) with N‐methylpyrrole (NMPy) was synthesized by potentiostatic electrochemical polymerization in acetonitrile–tetrabutylammonium tetrafluoroborate solvent–electrolyte couple. The chemical structures were confirmed via Fourier transform infrared spectroscopy (FTIR), cyclic voltammetry (CV), and UV–vis spectroscopy. Electrochromic and spectroelectrochemical properties of poly(TAPE‐co‐NMPy) [P(TAPE‐co‐NMPy)] were investigated. Results showed that the copolymer revealed color change between light yellow and green upon doping and dedoping of the copolymer, with a moderate switching time. Furthermore, as an application, dual‐type absorptive/transmissive polymer electrochromic device (ECD) based on poly(TAPE‐co‐NMPy) and poly(3,4‐ethylene dioxythiophene) (PEDOT) have been assembled, where spectroelectrochemistry, switching ability, stability, and optical memory of the ECD were investigated. Results showed that the device exhibited good optical memory and stability with moderate switching time. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 1988–1994, 2006  相似文献   

4.
Amphiphilic temperature‐ and photoresponsive linear–dendritic block copolymers comprising second‐generation acetonide‐2,2‐bis‐methylolpropionic acid‐based polyester dendron and linear poly(N‐isopropyl acrylamide) (PNIPAM) linked by an azobenzene unit were synthesized using atom transfer radical polymerization (ATRP) followed by click chemistry. Linear PNIPAM precursor was prepared from an azide‐functionalized azobenzene containing ATRP initiator. Two polymers obtained by varying the chain length of the PNIPAM block showed different morphologies and lower critical solution temperature (LCST) values in aqueous solution. Complete change in morphology of the two polymers into large spherical aggregates and nanotubes, respectively, was observed upon heating the micellar solution above LCST. The azobenzene unit was found to undergo transcis photoisomerization in the assemblies and caused a change in the microenvironment of an encapsulated hydrophobic dye without any release. Acetonide groups on the dendron were deprotected to afford hydroxylated polymer that showed well‐defined morphologies above the LCST and after heating–cooling cycle while significant dye encapsulation was seen only above the LCST. © 2017 Society of Chemical Industry  相似文献   

5.
Poly(ethylene glycol)‐block‐poly(N‐isopropylacrylamide) (PEG‐b‐PNIPAM) block copolymers were synthesized by atom transfer radical polymerization, and the α‐cyclodextrin (α‐CD) induced self‐assembly characteristics of the system were elucidated. Below the lower critical solution temperature (LCST) of PNIPAM, CD threaded onto the PEG segments and induced micellization to form rod‐shaped nanostructures comprising of a PEG/α‐CD condensed phase and a PNIPAM shell. Increasing the temperature of system above the LCST caused the PNIPAM segments to collapse, which resulted in the dethreading of the CD. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

6.
Poly(N‐isopropylacrylamide‐co‐acrylic acid) (poly(NIPAM‐co‐AA)) microgels with different copolymer compositions were prepared through soap‐free emulsion polymerization at 80°C, and 2, 2′‐azobisisobutyronitrile (AIBN) was used as initiator. Scanning electron microscope (SEM) characterization shows that the prepared microgels are regular and smooth and not easy to distort. Result of 1H‐NMR characterization shows that with increasing of the initial concentration of AA (AA in feed), the AA content in polymer chains increases. The thermal response of microgels latex was investigated by UV‐3010 spectrophometer through detecting the transmittance of the latex at different temperature in the range of 190–900 nm. The thermal response of the poly(NIPAM‐co‐AA) microgels was tested by dynamic light scattering (DLS). The results show that with the increase of AA content in polymer chains, the low critical solution temperature (LCST) of microgels latex first decreases and then increases. Still, with increasing of AA in poly(NIPAM‐co‐AA) microgels, the LCST of microgels first increases and then decreases. The basic reasons causing the changes of LCST of microgels latex and microgels are interpreted clearly in this article from the perspective of hydrogen bonding interaction. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

7.
The photoresponsive polyhedral oligomeric silsesquioxanes (POSS) based fluorinated azobenzene‐containing polymers were prepared and characterized by NMR, FT‐IR, GPC, XRD, TG and UV–Vis spectra. The thermal property of the polymers was improved by the introduction of POSS cage. The transcis photoisomerization of the polymers in solution was similar to that of the fluorinated azobenzene monomer and in accordance with the first‐order reaction kinetics equation within the first 250 seconds UV irradiation. The cotton fabrics coated with the polymers showed excellent water repellency and possessed switchable wettability under UV irradiation. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43540.  相似文献   

8.
A series of hydrolysis‐improved thermosensitive polyorganophosphazenes with α‐amino‐ω‐methoxy‐poly(ethylene glycol) (AMPEG) and amino acid esters (AAEs) of ‘N,N‐systems’ was synthesized, and their properties were evaluated in comparison with the thermosensitive polyorganophosphazenes with methoxy‐poly(ethylene glycol) (MPEG) and AAEs of ‘O,N‐systems’, by means of 31P NMR spectroscopy, gel permeation chromatography (GPC) and differential scanning calorimetry (DSC). Most of the present polymers showed a lower critical solution temperature (LCST) in the range 32.0–79.0 °C, depending on the kinds of AAE, length of AMPEG and the mol ratio of the two substituents. These polymers exhibited higher LCSTs and faster degradation rates than the MPEG‐based polymers. The aqueous solution of poly(ethyl glycinate phosphazene)‐graft‐poly(ethylene glycol) [NP(GlyEt)0.94(AMPEG350)1.06]n did not show an LCST, which is presumed to be due to its high hydrophilicity, in contrast to [NP(GlyEt)1.01(MPEG350)0.99]n which showing an LCST at 77.5 °C. On the other hand, the polymers with a high content of AAE or with hydrophobic amino acids such as L ‐aspartic acid and L ‐glutamic acid, have shown a similar LCST to those of the MPEG‐based polymers. The half‐lives (t1/2) for hydrolysis of [NP(AMPEG350)1.06(GlyEt)0.94]n at pH 5, 7.4 and 10 were 9, 16, and 5 days, respectively, which are almost 2.5 to 4 times faster than that of the MPEG‐based polymers. The LCST of the present N,N‐polymers has been shown to be more influenced by salts such as NaCl (‘salting‐out’ effect) and tetrapropylammonium bromide (TPAB) (‘salting‐in’ effect) compared with the ‘O,N‐system’. Such differences of the ‘N,N‐systems’ from the ‘O,N‐systems’ in thermosensitivity, hydrolysis behavior and salt effect seem to be due to the higher hydrophilicity of the amino group in AMPEG. Copyright © 2005 Society of Chemical Industry  相似文献   

9.
Poly[aniline‐coN‐(2‐hydroxyethyl) aniline] was synthesized in an aqueous hydrochloric acid medium with a determined feed ratio by chemical oxidative polymerization. This polymer was used as a functional conducting polymer intermediate because of its side‐group reactivity. To synthesize the alkyl‐substituted copolymer, the initial copolymer was reacted with NaH to obtain the N‐ and O‐anionic copolymer after the reaction with octadecyl bromide to prepare the octadecyl‐substituted polymer. The microstructure of the obtained polymers was characterized by Fourier transform infrared spectroscopy, 1H‐NMR, and X‐ray diffraction. The thermal behavior of the polymers was investigated by thermogravimetric analysis and differential scanning calorimetry. The morphology of obtained copolymers was studied by scanning electron microscopy. The cyclic voltammetry investigation showed the electroactivity of poly [aniline‐coN‐(2‐hydroxyethyl) aniline] and N and O‐alkylated poly[aniline‐coN‐(2‐hydroxyethyl) aniline]. The conductivities of the polymers were 5 × 10?5 S/cm for poly[aniline‐coN‐(2‐hydroxyethyl) aniline] and 5 ×10?7 S/cm for the octadecyl‐substituted copolymer. The conductivity measurements were performed with a four‐point probe method. The solubility of the initial copolymer in common organic solvents such as N‐methyl‐2‐pyrrolidone and dimethylformamide was greater than polyaniline. The alkylated copolymer was mainly soluble in nonpolar solvents such as n‐hexane and cyclohexane. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

10.
Polymer solutions that gel in response to changes in temperature and pH are of interest for various forms of drug delivery, and it is desirable to increase swelling for diffusion‐controlled release without bringing the lower critical solution temperature (LCST) above 37°C. N‐isopropylacrylamide (NIP) was polymerized with maleic acid (MAc), a diprotic acid, and acrylic acid (AAc), a monoprotic acid, to compare swelling and temperature response with changes in pH. For samples with equal acid contents and almost identical LCST responses to pH, poly(N‐isopropylacrylamide‐co‐maleic acid) (pNIP MAc) demonstrated greater swelling than poly(N‐isopropylacrylamide‐co‐acrylic acid) (pNIP AAc). The LCST increase for MAc occurred at a pH corresponding to the deprotonation of almost all of the first acid groups. Further increases in pH led to the deprotonation of the second ? COOH and only served to increase the charge concentration at a given location. These results provide strong support for the theory that LCST results largely from uninterrupted chain lengths of NIP and that swelling results from the actual charge density of acid groups along the chain. Because the use of a diprotic acid copolymer allows swelling to be decoupled from LCST, pNIP MAc may be an appropriate candidate for pH‐sensitive drug‐delivery applications. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 94: 2110–2116, 2004  相似文献   

11.
A poly(vinyl alcohol) (PVA)/sodium acrylate (AANa) copolymer was synthesized to improve the water solubility of PVA at the ambient temperature. Furthermore, a series of temperature‐responsive acetalyzed poly(vinyl alcohol) (APVA)‐co‐AANa samples of various chain lengths, degrees of acetalysis (DAs), and comonomer contents were prepared via an acid‐catalysis process. Fourier transform infrared and 1H‐NMR techniques were used to analyze the compositions of the copolymers. The measurement of the turbidity change for APVA‐co‐AANa aqueous solutions at different temperatures revealed that the lower critical solution temperature (LCST) of the copolymers could be tailored through the control of the molecular weight of the starting PVA‐co‐AANa, DA, and comonomer ratios. Lower LCSTs were observed for APVA‐co‐AANa with a longer chain length, a higher DA, and fewer acrylic acid segments. In addition, the LCSTs of the APVA‐co‐AANa aqueous solutions appeared to be salt‐sensitive. The LCSTs decreased as the concentration of NaCl increased. Moreover, atomic force microscopy images of APVA‐co‐AANa around the LCST also proved the temperature sensitivity. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

12.
New polyurethane cationomers synthesized by a two‐step substitution postreaction of urethane hydrogen atoms with nitroazobenzene groups were studied. As a starting polymer, a polyurethane based on poly(tetramethylene oxide)diol, isophorone diisocyanate, and 2,6‐bis(hydroximethyl)pyridine was used. After a preliminary metalation of the above polymer with natrium hydride, by reaction of polyurethane N‐sodate with 4‐nitro‐4′(β–iodoethylurethane)azobenzene, chromophoric groups between 2.85 and 10.53 wt % could be incorporated instead of hydrogen. Such polymers partially functionalized with azobenzene and further quaternized with methyl iodide led to the formation of pyridinium polyurethane cationomers N‐modified with nitroazo groups. The photosensible properties of the azobenzene chromophore in a polymer solution and film state indicated important differences in their photoresponse. In the polymer solution, the transcis photoisomerization of the chromophore is accompanied by an irreversible photobleaching effect, while under the same UV irradiation conditions, the ionomeric films exhibited an enhanced photostability. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 1240–1247, 2002  相似文献   

13.
A copolymer of styrene with N‐benzyl‐4‐vinylpyridinium chloride (BVP), poly(styrene‐coN‐benzyl‐4‐vinylpyridinium chloride) (PST‐co‐BVP), was degradable by activated sludge in soil when the oligo‐styrene portion was sufficiently small. The degradation of the equimolar copolymer followed first‐order kinetics when the polymer sample was 1.0 or 0.5 g/kg and gave a half‐life of 5.6 days. The degradation of PST‐co‐BVP with a reduced BVP content did not follow first‐order kinetics under the aforementioned conditions but appeared to follow the kinetics when the amount of the polymer sample was sufficiently small. Under the ultimate conditions, the half‐life of PST‐co‐BVP that contained 10.6 mol % BVP was estimated to be 12.5 days, and the half‐life of PST‐co‐BVP that contained 5 mol % BVP was expected to be 30–40 days. The incorporation of 5 mol % BVP appeared sufficient for making PST‐co‐BVP substantially biodegradable if we did not expect exceptionally rapid degradation. PST‐co‐BVP was different from conventional polystyrene but possessed biodegradability. Random scission of the main chain much predominated over uniform scission from the end of the polymer chain in the biodegradation of PST‐co‐BVP. The cleavage of the main chain at BVP appeared predominant over that of oligo‐styrene. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 554–559. 2006  相似文献   

14.
Poly(2‐iodoaniline) (PIANI) and poly(aniline‐co‐2‐iodoaniline) [P(An‐co‐2‐IAn)] were synthesized by electrochemical methods in acetonitrile solution containing tetrabutylammonium perchlorate (TBAP) and perchloric acid (HClO4). The voltametry of the copolymer shows characteristics similar to those of conventional polyaniline (PANI), and it exhibits higher dry electrical conductivity than PIANI and lower than PANI. The observed decrease in the conductivity of the copolymer relative to PANI is attributed to the incorporation of the iodine moieties into the PANI chain. The structure and properties of these conducting films were characterized by FTIR and UV‐Vis spectroscopy and by an electrochemical method (cyclic voltametry). Conductivity values, FTIR and UV‐Vis spectra of the PIANI and copolymer were compared with those of PANI and the relative solubility of the PIANI and the copolymer powders was determined in various organic solvents. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 1652–1658, 2003  相似文献   

15.
To investigate the effects of photoisomerizable azobenzene segments on the liquid‐crystalline characteristics and thermal properties of polymers, a series of liquid‐crystalline homopolymers and copolymers with azobenzene segments was synthesized. The azobenzene contents of the copolymers were estimated with elemental analysis. The photoisomerization of the azobenzene derivatives was studied with ultraviolet–visible (UV–vis) spectroscopy. The UV–vis absorption of the copolymers was found to be parallel with the content of the azobenzene segments. UV irradiation was found to cause a decrease in the copolymer transmittance around 355 nm due to the photoinduced isomerization from entgegen (E) to zusammen (Z). The phase‐transition temperatures and molecular weights of the polymers were investigated with differential scanning calorimetry and gel permeation chromatography, respectively. The variation in the phase‐transition temperature of the homopolymers before and after UV (365 nm) irradiation was investigated. The bended Z structure was found to disturb the order of the orientation of liquid crystals and to lower the phase‐transition temperature. The appearance of the polymer film was changed from opaque to clear after sufficient UV irradiation. The image recording of the polymer films was achieved after UV irradiation through a mask with pictures. The stability and reliability of the Nematic‐Isotropic phase transition of the homopolymers was evaluated with repeated cycles of 365‐nm UV irradiation and heating at 130°C. After the recycle phase transition was repeated nine times, no significant decay in the response and transmittance could be found. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 2006  相似文献   

16.
Terpolymers based on N‐isopropylacrylamide, sodium 2‐acrylamido‐2‐methyl‐propanesulfonate, and Ntert‐butylacrylamide were synthesized by free‐radical copolymerization with 2,2′‐azobisisobutyronitrile as an initiator. The lower critical solution temperatures (LCSTs) of the linear polymer aqueous solutions were determined by the measurement of the transmittance on UV at different temperatures. The influence of the polymer concentration, polymer composition, and ionic strength on the LCSTs of the linear polymers was investigated. The LCST decreased with increases in the hydrophobic monomer Ntert‐butylacrylamide, polymer concentration, and ionic strength. The phase transition became sharp when the polymer concentration and ionic strength increased. Meanwhile, the crosslinked hydrogels were prepared with the same recipe used for the linear terpolymers, but a crosslinker was added to the reaction system. The swelling ratios of the hydrogels at various temperatures and salt solutions were determined. The hydrogels possessed both high swelling ratios and thermosensitivity. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

17.
In this study, poly(o‐anisidine) [POA], poly(o‐anisidine‐co‐aniline) [POA‐co‐A], and polyaniline [PANi] were chemically synthesized using a single polymerization process with aniline and o‐anisidine as the respective monomers. During the polymerization process, p‐toluene sulfonic acid monohydrate was used as a dopant while ammonium persulfate was used as an oxidant. N‐methyl‐pyrolidone (NMP) was used as a solvent. We observed that the ATR spectra of POA‐co‐A showed features similar to those of PANi and POA as well as additional ones. POA‐co‐A also achieved broader and more extended UV–vis absorption than POA but less than PANi. The chemical and electronic structure of the product of polymerization was studied using Attenuated Total Reflectance spectroscopy (ATR) and UV–visible spectroscopy (UV–vis). The transition temperature of the homopolymers and copolymers was studied using differential scanning calorimetry and the viscosity average molecular weight was studied by using dilute solution viscometry. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

18.
Temperature‐ and NIR irradiation‐responsive microparticles composed of cinnamoyl poly(N‐isopropylacrylamide‐co‐hydroxyethylacrylate) [CinP(NIPAM‐HEA)] and gold nanoparticle (GNP) were prepared by a spray‐drying method. According to the cloud points determined by an optical method, the HEA content in P(NIPAM‐HEA) had no marked effect on the lower critical solution temperature (LCST). However, the cinnamoyl group content in CinP(NIPAM‐HEA) had a significant effect on the LCST. The LCSTs determined by a calorimetric method was in agreement with those determined by an optical method. The hydrodynamic mean diameter of gold nanoparticle (GNP) prepared by reducing gold ions was about 30 nm and it seemed to be a nanosphere on TEM photo. Spray‐dried CinP(NIPAM‐HEA) microparticles containing GNP was 1.5 μm to 12 μm in diameter on SEM photo. Gold was detected on the energy‐dispersive X‐ray spectrum of the microparticles. The amount of FITC‐dextran released for 12 h from the microparticles was much higher at temperatures above the LCST (at 37 °C and 45 °C) than below the LCST (at 20 °C and 25 °C). The cumulative release amount in 12 h was only about 3% without NIR irradiation, whereas the value was about 26.5% when NIR was irradiated to the microparticle suspension. The photothermal energy generated by GNP was believed to render the thermosensitive copolymers de‐swollen and hydrophobic, allowing for the active release of dye from the microparticles. The NIR irradiation‐responsive GNP‐loaded microparticles could be applied to the development of NIR‐responsive drug carriers which release their contents in response to an external stimulus (i.e., NIR irradiation). © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 44141.  相似文献   

19.
Poly[methyl(2,9‐diphenyl‐7,8‐benzophenanthryl)silylene‐co‐1,4‐bis(methylphenylsilyl)phenylene] (PMBS‐co‐BSP) was synthesized by the condensation reaction of dichloromethyl(2,9‐diphenyl‐7,8‐benzophenanthryl)silane and 1,4‐bis(chloromethylphenylsilyl)benzene with sodium in toluene. Optical and thermal behavior of the polymer was investigated. Because of the introduction of substituted benzophenanthryl groups into the Si atoms of the polymer, the UV absorption wavelength of the PMBS‐co‐BSP red‐shifted significantly in the UV region, and a strong photoluminescence band was observed in the visible region other than the near‐UV photoluminescence typical of normal polysilane. The photochemical behavior was examined both in solution and in thin film by fluorescence and UV spectroscopy. Irradiation of the PMBS‐co‐BSP with a low‐pressure mercury lamp in solution resulted in homolytic scission of silicone–silicone bonds; the fluorescence emission intensities decreased gradually with increasing UV irradiation time and the maximum emission wavelength blue‐shifted significantly. Irradiation of thin solid films of the PMBS‐co‐BSP in air led to the formation of photoproducts containing Si? OH and Si? O? Si groups. The PMBS‐co‐BSP began to weigh less at about 300 °C and the weight loss of the polymer at 700 °C was calculated to be 75% of the initial weight in N2. Copyright © 2006 Society of Chemical Industry  相似文献   

20.
Novel bioactive and optically active poly(N‐acryloyl‐L ‐phenylalanine) (PAPA) was synthesized by atom transfer radical polymerization. PAPA‐silver (Ag) nanocomposites have been successfully prepared via in situ reducing Ag+ ions anchored in the polymer chain using hydrazine hydrate as reducing agent in an aqueous medium. By controlling of the amount of Ag+ ions introduced, we have produced an organic/inorganic nanocomposite containing Ag nanoparticles with well controlled size. Nanocomposites were characterized by X‐ray diffraction (XRD), UV–Vis spectrophotometry, transmission electron microscopy, and Fourier transform infrared. XRD pattern showed presence of Ag nanoparticles. The PAPA/Ag nanocomposites with 1 : 10 silver nitrate (AgNO3) : PAPA ratio revealed the presence of well‐dispersed Ag nanoparticles in the polymer matrix. All of these Ag nanoparticles formed are spherical and more than 80% of them are in the range of 15–25 nm. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号