首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dense SiC ceramic matrix composites containing SiC whiskers (SiCw) and MoSi2 phase (SiCw/MoSi2–SiC) are fabricated by a liquid Si infiltration (LSI) method. Pyrolyzed rice husks (RHs) containing SiC whiskers, particles and amorphous carbon are mixed with different amounts of Mo powder to form preforms for the infiltration. Microstructure and mechanical properties of the composites are studied. Fracture mode of the composites is discussed. Results show that the SiC whiskers and fine particles in the pyrolyzed RHs were preserved in the composites after the LSI process. The amorphous carbon and Mo powder in the preforms reacted with molten Si, forming SiC and MoSi2 in the composites. The presence of MoSi2 in the composite increases the elastic modulus but lowers the flexure strength. Content of MoSi2 of ca. 20 wt.% provides an enhanced fracture toughness of 4.1 MPa m1/2 for the composite. But too large amount of MoSi2 caused crack formation in the composite. The compressive residual stress introduced by the formation of MoSi2 and SiC, and the de-bonding of the fine SiC particles and SiC whiskers from the residual Si phase are considered to favor the fracture toughness of the composites.  相似文献   

2.
MoSi2 based materials are considered as a potential high temperature structural parts. In this work, a 0.5 wt% Y2O3–20 vol% SiC/MoSi2 composite was successfully prepared by pressureless sintering from mechanical-assistant combustion synthesized powders. Adding a small amount of Y2O3 to the SiC/MoSi2 composite decreased the apparent activation energy of sintering by 10.4%, resulting in a denser composite with finer grains. The relative density, flexural strength, Vickers hardness and fracture toughness of 0.5 wt% Y2O3–20 vol% SiC/MoSi2 increased by 5.3%, 27.7%, 27.2% and 35.8% as compared to 20 vol% SiC/MoSi2, respectively. The oxidation mass gain of Y2O3–20 vol% SiC/MoSi2 at 1200 °C was higher than that of 20 vol% SiC/MoSi2 for 16.9%, while it still exhibited very good oxidation resistance at this temperature.  相似文献   

3.
TiB2–SiC ceramic composites with different contents of Ni as additive were prepared by the Reactive Hot Pressing (RHP) process at 1700 °C under a pressure of 32 MPa for 30 min. For comparison, a monolithic TiB2 ceramic and TiB2–SiC ceramic composite were also fabricated under the identical temperature, pressure and holding time by the Hot Pressing (HP) process. The effects of the fabrication process and Ni on the microstructure and mechanical properties of the composites were investigated. About 8 vol.% of elongated TiB2 grains with an aspect ratio of 3–6 and a diameter of 0.5–1 μm were produced in the composite prepared by the RHP process. The improvement of the fracture toughness was attributed to the toughening and strengthening effects of SiC particles and the elongated TiB2 grains such as crack deflection. The TiB2–SiC–5 wt.% Ni ceramic composite had the optimum mechanical properties with a flexural strength of 858 ± 87 MPa, fracture toughness of 8.6 ± 0.54 MPa·m1/2 and hardness of 20.2 ± 0.94GPa. The good mechanical properties were ascribed to the relatively fine and homogeneous microstructure and the strengthening effect of Ni. Ni inhibited the anisotropic growth of TiB2.  相似文献   

4.
《Intermetallics》1999,7(1):109-114
Ni3Al and MoSi2 intermetallic phases were arc melted in Ni3Al/MoSi2 molar proportion of ten. Pure binary Ni3Al and the quaternary alloy were subjected to directional solidification using the floating zone method at growth rates of 10–50 mm h−1. The phase composition and structure of the crystals were analyzed using optical microscopy, scanning electron microscopy, energy dispersive spectroscopy and X-ray diffractometry. The yield strength was studied in compression at 293–1293 K and in tension at room temperature. Compared to the binary Ni3Al crystals, the quaternary Ni–Al–Mo–Si crystals revealed up to 5 times higher compressive yield strength at 400–800 K. Ni–Mo–Si C14 Laves phase precipitation in the L12 Ni3Al+L10 NiAl matrix duplex phase was found in quaternary crystals. This precipitation is assumed to cause the observed mechanical behaviour.  相似文献   

5.
TiB2-SiC composites with different amounts of Ni (0, 2 and 5 wt.%) added as sintering aid were fabricated by reactive hot pressing (RHP). The mechanical properties were assessed under ambient conditions and the flexural strength was further tested in the temperature range of 700–1000 °C. The microstructures of the composites were characterized by a scanning electron microscope (SEM), transmission electron microscope (TEM) and energy-dispersive spectrometer (EDS). The flexural strength degradation mechanism occurring at elevated temperatures was studied. Addition of a moderate amount of Ni led to an improvement of the mechanical properties at room temperature. For the investigated ceramic composites, TiB2-SiC-5 wt.% Ni sample showed significantly enhanced mechanical properties, i.e., a flexural strength of 1121 ± 31 MPa, a fracture toughness of 7.9 ± 0.58 MPa·m1/2, a hardness of 21.3 ± 0.62 GPa, and a relative density of 98.6 ± 1.2%. Ni distributed along grain boundaries improved the interface strength. The improved fracture toughness was ascribed to crack deflection, grain rupture and crack shielding effect of Ni. A substantial strength degradation occurred at elevated temperatures, which was attributed to softening of the grain boundaries, surface oxidation and sliding of grain boundaries. The elastic modulus was found to decrease with increasing temperature.  相似文献   

6.
ZrSi2 and SiC are good candidates to improve both sinterability and mechanical properties of ZrB2 ceramics, which were synthesized simultaneously by an in-situ reaction of ZrC and Si additives during the sintering processing in this work. The ZrB2 ceramic composites with different amount of ZrSi2 and SiC were fabricated by reactive spark plasma sintering (RSPS) method. X-ray diffraction, scanning microscopy and Archimedes's method are used to characterize the phase, microstructure and density of the composites. Meanwhile, fracture toughness and flexural strength of the obtained composites were investigated too. It's found that a fully dense composite can be achieved at 1500 °C by SPS. Both fracture toughness and flexural strength of ZrB2 ceramics increased with increasing the concentration of ZrSi2 and SiC additives and reached a maximum of 7.33 ± 0.24 MPa·m1/2 and 471 ± 15 MPa, respectively, with the ZrSi2 + SiC content of 30 wt%.  相似文献   

7.
The (TiB2–TiCxNy)/Ni composites were fabricated by the method of combustion synthesis and hot press consolidation in a Ni–Ti–B4C–BN system. The effect of Ni content on the microstructure, hardness, compression properties and abrasive wear behavior of the composites has been investigated. The results indicate that with the increase in Ni content from 30 wt.% to 60 wt.%, the average size of the ceramic particles TiB2 and TiCxNy decreases from 5 μm to ≤ 1 μm, while the hardness and the abrasive wear resistance of the composites decrease. The composite with the Ni content of 30 wt.% Ni possesses the highest hardness (1560.8 Hv) and the best abrasive wear resistance. On another hand, with the increase in the Ni content, the compression strength increases firstly, and then decreases. The composite with 50 wt.% Ni possesses the highest compression strength (3.3 GPa). The hardness and fracture strain of the composite with 50 wt.% Ni are 1251.2 Hv and 3.9%, respectively.  相似文献   

8.
ZrB2–SiC ceramic composites were prepared through water-based gelcasting and pressureless sintering. Effects of the pressureless sintering temperature (1500–2000 °C), heating rate (5–15 °C/min) and soaking time (0.5–2 h) on the relative density, microstructure and mechanical properties of the ZrB2–SiC composites were investigated in detail. A sintering temperature of 2000 °C, a heating rate of 5 °C/min and a soaking time of 2 h were found to be the optimal pressureless sintering procedure. The relative density, flexural strength and fracture toughness of the ZrB2–SiC composite prepared under the optimum condition were 97.8%, 403.1 ± 27.8 MPa and 4.05 ± 0.42 MPa·m1/2, respectively.  相似文献   

9.
Reliable brazing of TZM alloy and ZrC particle reinforced (ZrCp) W composite was achieved in this study by using Ti-28Ni eutectic brazing alloy. The typical interfacial microstructure of TZM/Ti-28Ni/ZrCp-W brazed joint consisted of a Ti solid solution (Ti(s, s)) layer, a continuous Ti2Ni layer and a diffusion layer mainly composed of W particles and (Ti, Zr)C particles. With an increase of brazing temperature, more ZrC particles and W particles entered the molten brazing alloy, which broadened the brazing seam and diminished the Ti2Ni layer, resulting in the disappearance of the Ti2Ni layer eventually. Meanwhile, more Ti(s, s) stripes were observed on the TZM side. The presence of continuous Ti2Ni intermetallic phase and Ti(s, s) stripes structure in joints deteriorated the joining properties, which resulted in the formation of brittle fracture under shear test. In addition, the fracture path was related to the brazing temperature, and cracks initiate and propagate in the continuous Ti2Ni layer at lower temperatures. However, the fracture path tended to be located at the TZM substrate close to the interface between TZM and the brazing seam when the brazing temperature exceeded 1040 °C. The optimal room temperature shear strength reached 120.5 MPa when brazed at 1040 °C for 10 min and the fracture surface exhibited cleavage fracture characteristics, and the shear strength at high temperature of 800 °C for the specimens with highest shear strength at room temperature reached 77.5 MPa.  相似文献   

10.
Dense (ZrB2 + SiC)/Zr2[Al(Si)]4C5 composites with adjustable content of (ZrB2 + SiC) reinforcements (0–30 vol.%) were prepared by in situ hot-pressing. The microstructure, room and high temperature mechanical and thermal physical properties, as well as thermal shock resistance of the composites were investigated and compared with monolithic Zr2[Al(Si)]4C5 ceramic. ZrB2 and SiC incorporated by in situ reaction significantly improve the mechanical properties of Z2[Al(Si)]4C5 by the synergistic action of many mechanisms including particulate reinforcement, crack deflection, branching, bridging, “self-reinforced” microstructure and grain-refinement. With (ZrB2 + SiC) content increasing, the flexural strength, toughness and Vickers hardness show a nearly linear increase from 353 to 621 MPa, 3.88 to 7.85 MPa·m1/2, and 11.7 to 16.7 GPa, respectively. Especially, the 30 vol.% (ZrB2 + SiC)/Zr2[Al(Si)]4C5 composite retains a high modulus up to 1511 °C (357 GPa, 86% of that at 25 °C) and superior strength (404 MPa) at 1300 °C in air. The composite shows higher thermal conductivity (25–1200 °C) and excellent thermal shock resistance at ΔT up to 550 °C. Superior properties render the composites a promising prospect as ultra-high-temperature ceramics.  相似文献   

11.
S.-H. Lee  M. Weinmann 《Acta Materialia》2009,57(15):4374-4381
Precursor-derived Si–B–C–N ceramics are well known for their outstanding thermal stability up to 2000 °C. However, if they are integrated with long ceramic fiber fabrics, the thermal stability of the respective fiber–matrix composites decreases, and the associated thermomechanical properties worsen. A method of improving the thermal stability of a fiber-reinforced Si–B–C–N-based composite up to 1700 °C by the application of SiC filler particulates is reported. The mass loss of such composites is very low even after heating to 2100 °C. Remarkably, a pre-heat treatment of the SiC filler is essential in order to achieve the thermal stability of the ceramic matrix composites by removing surface SiO2. The composite described here retained 96% of its room-temperature strength and possessed non-brittle fracture behavior after heating at 1700 °C for 10 h in Ar. The flexural creep deformation of the composite at 1400 °C was only 0.25% after 60 h under 100 MPa pressure.  相似文献   

12.
The friction and wear behaviour of hot pressed boron carbide/graphene platelets (GPLs) composites have been investigated using the ball-on-flat technique with SiC ball under dry sliding conditions at room temperature. The hardness and fracture toughness of the investigated materials varied from 18.21 GPa to 30.35 GPa and from 3.81 MPa·m1/2 to 4.60 MPa·m1/2, respectively. The coefficient of friction for composites were similar, however the wear rate significantly decreased ~ 77% in the case of B4C + 6 wt.% GPLs when compared to reference material at a load of 5 N, and ~ 60% at a load of 50 N. Wear resistance increased with increasing GPLs content in regards to the present graphene platelets, which during the wear test pulled-out from the matrix, exfoliated and created a wear protecting graphene-silicon based tribofilm.  相似文献   

13.
《Intermetallics》2007,15(5-6):632-634
In this paper, the microstructures and mechanical properties of the two BMG composites with the same composition of Zr56.2Ti13.8Nb5.0Cu6.9Ni5.6Be12.5, which contain in situ formed dendritic and spherical bcc β-Zr (Ti, Nb) solid solutions, are compared based on micrograph observations, XRD analysis and uniaxial compression tests at room temperature. The dendritic β phase exhibits well-developed primary dendrite axes with lengths of 20–50 μm and diameters of about 1–3 μm; the spherical β phase with the same volume fraction of about 30% as the dendritic β phase has a much larger average diameter of about 18 μm as compared to the primary dendrite axes of the β phase. Compression tests demonstrated that the yield stress, strain at the yield point, ultimate fracture strength and fracture plastic strain of the composite containing dendritic β phase are 1208 MPa, 1.78%, 1757 MPa and 8.82%, respectively. For the composites containing spherical β phase, however, a much larger fracture plastic strain of about 12% was achieved, and combined with a somewhat higher yield strength of 1350 MPa and a larger strain of 2.32% at the yield point, the ultimate fracture strength was measured to be about 1800 MPa.  相似文献   

14.
《Intermetallics》1999,7(2):213-232
The effect of Al alloying on the microstructure and properties of MoSi2 was investigated. MoSi2–2.8 and 5.5 at% Al (1.5 and 3 wt %, respectively) alloys showed a two phase microstructure comprising of α-Al2O3 and MoSi2–Al alloy, while the MoSi2–9 at% (5 wt %) Al alloy possessed a 3 phase microstructure: MoSi2–Al alloy, Mo(Si,Al)2 and α-Al2O3. Al additions to MoSi2 reduced the SiO2 phase, which is detrimental for high temperature strength of MoSi2, forming Al2O3. The surplus Al entered into solid solution with the MoSi2 and altered the lattice parameters. The Al in solid solution was 0.5 at% in MoSi2–2.8 at% Al alloy, 2.5 at% in MoSi2–5.5 at% Al alloy and 3.1 at% in the MoSi2–9 at% Al alloy. The fracture toughness underwent only a moderate improvement in MoSi2–2.8 at% and 5.5 at% Al alloys, but exhibited a significant 49% rise in the MoSi2–9 at% Al alloy. Replacement of SiO2 by Al2O3 in MoSi2–Al alloys led to a significant improvement in the high temperature yield strength between 1100°C and 1250°C.  相似文献   

15.
TiB2-based ceramic composites with different amounts of ZrB2 and SiC were prepared by spark plasma sintering at 1700 °C with an initial pressure of 40 MPa and a holding time of 10 min. The (TixZry)B2 solid solution was found in the sintered TiB2/ZrB2/SiC composites by XRD. The microstructural and mechanical properties of the prepared samples were investigated. The composite with the addition of 30 vol.% ZrB2 shows better comprehensive performances, and the bending strength and the fracture toughness of the composite are 780.5 MPa and 7.34 MPa m1/2, respectively. The generation of the (TixZry)B2 solid solution makes the microstructures of the composites finer and more homogeneous, which has played a very important role in grain refinement and interface fusion.  相似文献   

16.
Uniaxial tension tests are carried out for the Mo–10 wt.% Cu (Mo–10Cu) composite under a scanning electron microscope (SEM) at a temperature range from 25 °C to 725 °C. The stress–strain curves are obtained with both the tensile strength and the fracture strain peaked at 500 °C. Further raise of temperature would reduce the tensile strength and the fracture strain. In-situ SEM observations reveal the microstructure characteristics for Mo–10Cu composite at different temperatures. The fracture is of brittle inter-granular type when uni-axially tensioned at room temperature. As the temperature increases, formation of slip bands and linkage of micro-voids via plastic shear are observed. The fracture is characterized by mixed inter-granular fracture and plastic shear. The fracture is of predominantly plastic shear when uni-axially tensioned at 500 °C. Under uniaxial tension at temperatures higher than 650 °C, Mo–10Cu composite embrittles due to the insolubility of molybdenum and copper, and the activated grain boundary diffusion of Cu. These results are of importance for the basic understanding of the microstructure–mechanical properties relationship, as well as for the evaluation of Mo–Cu composites in practical applications.  相似文献   

17.
Titanium diboride (TiB2) composite with MoSi2 and CrB2 has been prepared and tested to possess excellent oxidation resistance. Dense composite pellets were fabricated by hot pressing of powder mixtures. Microstructural characterization was carried out by XRD and SEM. Hardness and fracture toughness values were measured. Extensive oxidation studies of the composites were also carried out. Density of ≥ 96% ρth was obtained by hot pressing at 1800 °C under a pressure of 35 MPa for 1 h. Hardness and fracture toughness were in the range of 18–24 GPa and 3.5–4 MPa·m1/2 respectively. Crack branching, deflection and bridging mechanisms were observed in the crack propagation paths. Isothermal and continuous oxidation studies of these composites up to 1000 °C showed improved oxidation resistance with the formation of protective glassy layer. TiO2, Cr2O3 and SiO2 phases were identified on the oxidized surface. Diffusion controlled mechanism of oxidation was observed in the composites.  相似文献   

18.
MoSi2–CrSi2 nanocomposite powder was successfully synthesized by ball milling of Mo, Si and Cr elemental powders. Effects of the Cr content, milling time and annealing temperature were studied. X-ray diffraction (XRD) was used to characterize the milled and annealed powders. The morphological and microstructural evolutions were studied by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). High temperature polymorph (HTP) of MoSi2 begins to form after 50 h of milling and completes after 70 h of milling. MoSi2–CrSi2 composite powder was also prepared with a combination of short milling time (50 h) and low temperature annealing (850 °C). Annealing led to the HTP to low temperature polymorph (LTP) transformation of MoSi2. MoSi2–CrSi2 nanocomposite powder with the mean grain size less than 50 nm was obtained at the end of milling. This composite maintained its nanocrystalline nature after annealing. A spherical morphology was procured for 50 h milled powder with 0.25 mole Cr.  相似文献   

19.
《Acta Materialia》2008,56(18):5345-5354
An analytical framework for determination of scratch-induced residual stress within SiC grains of ZrB2–SiC composite is developed. Using a “secular equation” that relates strain to Raman-peak shift for zinc-blende structures and the concept of sliding blister field model for scratch-induced residual stress, explicit expressions are derived for residual stress calculation in terms of phonon deformation potentials and Raman peak shift. It is determined that, in the as-processed composite, thermal expansion coefficient mismatch between ZrB2 and SiC induces compressive residual stress of 1.731 GPa within the SiC grains and a tensile tangential stress of 1.126 GPa at the ZrB2–SiC interfaces. With increasing scratch loads, the residual stress within the SiC grains becomes tensile and increases in magnitude with scratch load. At a scratch load of 250 mN, the calculated residual stress in SiC was 2.6 GPa. Despite this high value, no fracture was observed in SiC grains, which has been rationalized based on fracture strength calculations from Griffith theory.  相似文献   

20.
《Intermetallics》1999,7(5):571-577
The TiAl–Ti2AlC composites with and without impurities, Ni, Cl and P, were prepared by combustion reaction from the elemental powders and cast after arc melting. The resulting composites had about 18 vol% Ti2AlC in the lamellar matrix consisting of γ-TiAl and Ti3Al (α2). In the homogenized specimens, the α2 phase decomposed to γ-TiAl and Ti2AlC. The composite material had a high strength both at ambient and elevated (1173 K) temperatures; about 800 and 400 MPa, respectively, with an ambient temperature ductility of 0.7% at bending test. The fracture toughness test also proved that the homogenized composite has higher toughness than the as cast one. The toughness value reached to 17.8 MPa m1/2. The zigzag cracks propagated in the homogenized composite and the reinforcement Ti2AlC particles and the finely precipitated Ti2AlC particles were main obstacles to the crack propagation. The composite with impurities showed a marginal improvement in the oxidation resistance over the composites without impurities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号